Dual N-Channel, Digital FET

FDG6301N-F085

Features

- 25 V, 0.22 A Continuous, 0.65 A Peak
- $R_{DS(ON)} = 4 \Omega @ V_{GS} = 4.5 V$,
- $R_{DS(ON)} = 5 \Omega @ V_{GS} = 2.7 V.$
- Very Low Level Gate Drive Requirements allowing Directop— Eration in 3 V Circuits (V_{GS(th)}< 1.5 V)
- Gate–Source Zener for ESD Ruggedness (>6 kV Human Body Model)
- Compact Industry Standard SC70-6 Surface Mount Package.
- AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

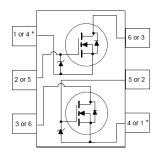
 Low Voltage Applications as a Replacement for Bipolar Digital Transistors and Small Signal MOSFETs

MOSFET MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

Symbol	Parameter	Ratings	Units
VDSS	Drain to Source Voltage	25	V
Vgs	Gate to Source Voltage	8	V
lD	Drain Current Continuous	0.22	Α
	Pulsed	0.65	
Pb	Power Dissipation	0.3	W
ТJ, Tsтg	Operating and Storage Temperature	-55 to 150	°C
ESD	Electrostatic Discharge Rating MIL-STD-883D Human Body Model (100 pF / 1500 W)	6.0	kV
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	415	°C/W

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. $R_{\theta JA}$ is the sum of the junction–to–case and case–to–ambient thermal resistance, where the case thermal reference is defined as the Solder mounting surface of the drain pins. $R_{\theta JC}$ is guaranteed by design, while $R_{\theta JA}$ is determined by the board design. $R_{\theta JA} = 415$ °C/W on minimum pad mounting on FR–4 board in still air.
- A suffix as "...F085P" has been temporarily introduced in order to manage a double source strategy as ON Semiconductor has officially announced in August 2014.
- 3. Pulse Test: Pulse Width < 300 μs, Duty Cycle < 2.0%



ON Semiconductor®

www.onsemi.com

SC-88 (SC-70 6 Lead), 1.25x2 CASE 419AD

ORDERING INFORMATION

Device	Device Marking	Package	Shipping [†]
FDG6301N-F085	FDG6301N	SC-88 (SC-70 6 Lead) (Pb-Free, Halogen Free)	3,000 units / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D

FDG6301N-F085

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Units
Off Characteristics						
Drain to Source Breakdown Voltage	Bvdss	$I_D = 250 \mu A, V_{GS} = 0 V$	25			V
Zero Gate Voltage Drain Current	IDSS	V _{DS} = 20 V, V _{GS} = 0 V			1	μΑ
		$T_J = 55^{\circ}C$			10	
Gate to Source Leakage Current	Igss	V _{GS} = ±8 V			±100	nA
On Characteristics						
Gate to Source Threshold Voltage	VGS(th)	$V_{GS} = V_{DS}, I_{D} = 250 \mu A$	0.65	0.85	1.5	٧
Drain to Source On Resistance	rDS(on)	I _D = 0.22 A, V _{GS} = 4.5 V		2.6	4	Ω
		I _D = 0.19 A, V _{GS} = 2.7 V		3.7	5	
		I _D = 0.22 A, V _{GS} = 4.5 V, T _J = 125°C		5.3	7	
On-State Drain Current	ID(on)	V _{GS} = 4.5 V, V _{DS} = 5 V	0.22			
Forward Transconductance	gFS	I _D = 0.22 A, V _{DS} = 5 V		0.2		s
Dynamic Characteristics						
Input Capacitance	Ciss	$V_{DS} = 10 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$		9.5		pF
Output Capacitance	Coss			6		pF
Reverse Transfer Capacitance	Crss			4.5		pF
Total Gate Charge at -4.5 V	Qg(TOT)	V _{GS} = 0 to 4.5 V; V _{DD} = 5 V, I _D = 0.22 A		0.29	0.4	nC
Gate to Source Gate Charge	Qgs	V _{DD} = 5 V _, I _D = 0.22 A		0.12		
Gate to Drain "Miller" Charge	Qgd			0.03		
Switching Characteristics						
Turn-On Delay Time	td(on)	$V_{DD} = 5 \text{ V}, I_{D} = 0.5 \text{ A}, V_{GS} = 4.5 \text{ V},$ $R_{GEN} = 50 \Omega$		5	10	ns
Rise Time	t _r			4.5	10	ns
Turn-Off Delay Time	td(off)			4	8	ns
Fall Time	t _f			3.2	7	ns
Drain-Source Diode Characteristics		-		•	*	•
Maximum Continuous Source Current	Is				0.25	А
Source to Drain Diode Voltage	Vsd	I _{SD} = 0.25 A, V _{GS} = 0 V		0.8	1.2	V

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

FDG6301N-F085

TYPICAL CHARACTERISTICS

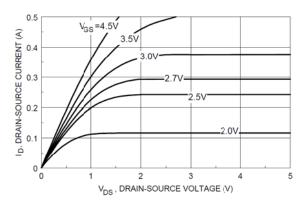


Figure 1. On-Region Characteristics

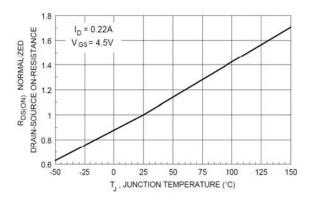


Figure 3. On-Resistance Variation with Temperature

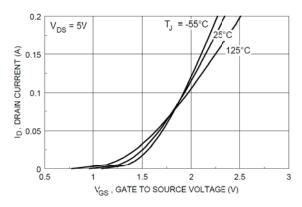


Figure 5. Transfer Characteristics

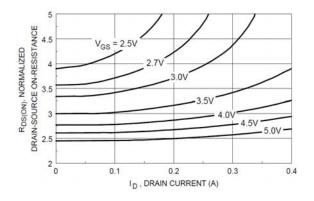


Figure 2. On-Resistance Variation with Drain Current and Gate Voltage

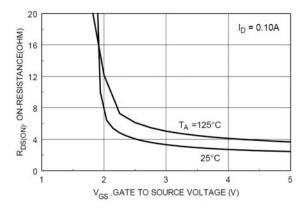


Figure 4. On–Resistance Variation with Gate–to–Source Voltage

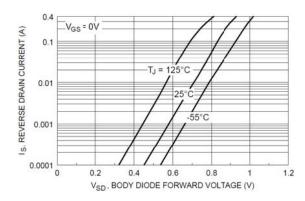


Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature

FDG6301N-F085

TYPICAL CHARACTERISTICS

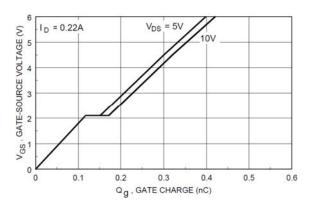


Figure 7. Gate Charge Characteristics

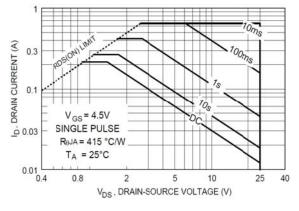


Figure 9. Maximum Safe Operating Area

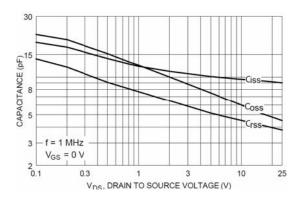


Figure 8. Capacitance Characteristics

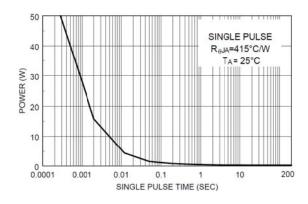


Figure 10. Single Pulse Maximum Power Dissipation

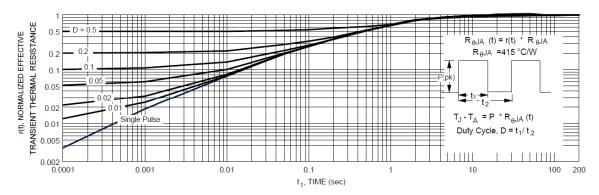
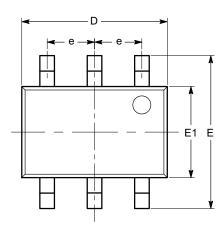
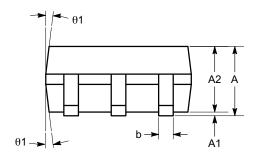
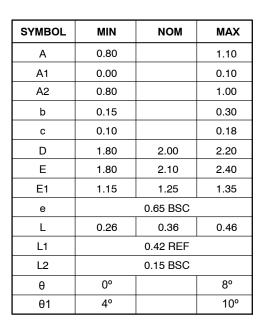
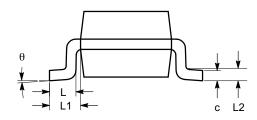



Figure 11. Transient Thermal Response Curve



SC-88 (SC-70 6 Lead), 1.25x2 CASE 419AD-01 ISSUE A


DATE 07 JUL 2010



TOP VIEW

SIDE VIEW

END VIEW

Notes:

- (1) All dimensions are in millimeters. Angles in degrees.
- (2) Complies with JEDEC MO-203.

DOCUMENT NUMBER:	98AON34266E	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SC-88 (SC-70 6 LEAD), 1.25X2		PAGE 1 OF 1	

ON Semiconductor and at a trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative