NXP Semiconductors

Technical Data

Document Number: AFT31150N Rev. 0, 05/2017

VRoHS

RF Power LDMOS Transistor

N-Channel Enhancement-Mode Lateral MOSFET

This RF power transistor is designed for applications operating at frequencies between 2700 and 3100 MHz. This device is suitable for use in pulse applications.

Typical Performance: In 2700–3100 MHz reference circuit, V_{DD} = 32 Vdc

Frequency	Signal Type	P _{out}	G _{ps}	η _D	IRL
(MHz)		(W)	(dB)	(%)	(dB)
2700–3100 ⁽¹⁾	Pulse (300 μsec, 15% Duty Cycle)	150 Peak	17.2	49.0	-6

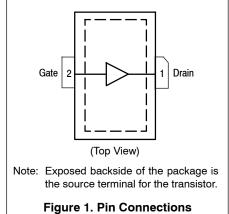
Load Mismatch/Ruggedness

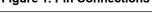
Frequency (MHz)	Signal Type	VSWR	P _{in} (W)	Test Voltage	Result
3100 (2)	Pulse (300 µsec, 15% Duty Cycle)	10:1 at all Phase Angles	6.8 Peak (3 dB Overdrive)	32	No Device Degradation

- The values shown are the center band performance numbers across the indicated frequency range.
- 2. Measured in 3100 MHz narrowband production test fixture.

Features

- · Characterized with series equivalent large-signal impedance parameters
- · Internally matched for ease of use
- Qualified up to a maximum of 32 V_{DD} operation
- · Integrated ESD protection
- Greater negative gate-source voltage range for improved Class C operation
- Recommended driver: AFIC31025N (25 W)
- Included in NXP product longevity program with assured supply for a minimum of 15 years after launch


Typical Applications


- · Commercial S-Band radar systems
- Maritime radar
- Weather radar

AFT31150N

2700–3100 MHz, 150 W PEAK, 32 V AIRFAST RF POWER LDMOS TRANSISTOR

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	-0.5, +65	Vdc
Gate-Source Voltage	V _{GS}	-6.0, +10	Vdc
Operating Voltage	V _{DD}	32, +0	Vdc
Storage Temperature Range	T _{stg}	-65 to +150	°C
Case Operating Temperature Range	T _C	-40 to +150	°C
Operating Junction Temperature Range (1,2)	T _J	-40 to +225	°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	741 3.7	W W/°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value ^(2,3)	Unit
Thermal Impedance, Junction to Case Pulse: Case Temperature 76°C, 160 W Peak, 300 µsec Pulse Width, 15% Duty Cycle, 32 Vdc, I _{DQ} = 100 mA, 3100 MHz	$Z_{ heta JC}$	0.042	°C/W

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JESD22-A114)	2, passes 2500 V
Charge Device Model (per JESD22-C101)	C3, passes 2000 V

Table 4. Moisture Sensitivity Level

Test Methodology	Rating	Package Peak Temperature	Unit
Per JESD22-A113, IPC/JEDEC J-STD-020	3	260	°C

Table 5. Electrical Characteristics ($T_A = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Off Characteristics			•	•	•
Gate-Source Leakage Current (V _{GS} = 5 Vdc, V _{DS} = 0 Vdc)	l _{GSS}	_	_	1	μAdc
Drain-Source Breakdown Voltage $(V_{GS} = 0 \text{ Vdc}, I_D = 10 \mu\text{Adc})$	V _{(BR)DSS}	65	_	_	Vdc
Zero Gate Voltage Drain Leakage Current (V _{DS} = 32 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	1	μAdc
Zero Gate Voltage Drain Leakage Current (V _{DS} = 65 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	10	μAdc
On Characteristics				•	

Gate Threshold Voltage $(V_{DS} = 10 \text{ Vdc}, I_D = 180 \mu Adc)$	V _{GS(th)}	0.8	1.2	1.6	Vdc
Gate Quiescent Voltage $(V_{DD} = 32 \text{ Vdc}, I_D = 100 \text{ mAdc}, \text{ Measured in Functional Test})$	V _{GS(Q)}	1.1	1.6	2.1	Vdc
Drain-Source On-Voltage (V _{GS} = 10 Vdc, I _D = 1.8 Adc)	V _{DS(on)}	0.1	0.15	0.3	Vdc

- 1. Continuous use at maximum temperature will affect MTTF.
- $2. \ \ MTTF \ calculator \ available \ at \ \underline{http://www.nxp.com/RF/calculators}.$
- $3. \ \ Refer to \ AN1955, \textit{Thermal Measurement Methodology of RF Power Amplifiers}. \ Go \ to \ \underline{http://www.nxp.com/RF} \ and \ search \ for \ AN1955.$

(continued)

Table 5. Electrical Characteristics ($T_A = 25^{\circ}C$ unless otherwise noted) (continued)

Characteristic	Symbol	Min	Тур	Max	Unit
Functional Tests (1) (In NXP Production Test Fixture, 50 ohm system) Vpp = 32 Vdc, Ipp = 100 mA, Pout = 160 W Peak (24 W Avg.).					

Functional Tests (1) (In NXP Production Test Fixture, 50 ohm system) $V_{DD} = 32 \text{ Vdc}$, $I_{DQ} = 100 \text{ mA}$, $P_{out} = 160 \text{ W Peak (24 W Avg.)}$, f = 3100 MHz, 300 μ sec Pulse Width, 15% Duty Cycle

Power Gain	G _{ps}	15.0	17.0	19.0	dB
Drain Efficiency	η_{D}	46.5	50.0	_	%
Input Return Loss	IRL	_	-19	-9	dB

Table 6. Load Mismatch/Ruggedness (In NXP Production Test Fixture, 50 ohm system) I_{DQ} = 100 mA

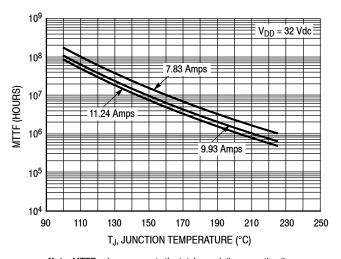

Frequency (MHz)	Signal Type	VSWR	P _{in} (W)	Test Voltage, V _{DD}	Result
3100	Pulse (300 μsec, 15% Duty Cycle)	10:1 at all Phase Angles	6.8 Peak (3 dB Overdrive)	32	No Device Degradation

Table 7. Ordering Information

Device	Tape and Reel Information	Package
AFT31150NR5	R5 Suffix = 50 Units, 32 mm Tape Width, 13-inch Reel	OM-780-2L

^{1.} Part internally matched both on input and output.

TYPICAL CHARACTERISTICS

Note: MTTF value represents the total cumulative operating time under indicated test conditions.

MTTF calculator available at http://www.nxp.com/RF/calculators.

Figure 2. MTTF versus Junction Temperature – Pulse

2700–3100 MHz REFERENCE CIRCUIT – 2.0" \times 3.0" (5.1 cm \times 7.6 cm)

Table 8. 2700-3100 MHz Performance (In NXP Reference Circuit, 50 ohm system)

 P_{out} = 150 W, V_{DD} = 32 Vdc, I_{DQ} = 100 mA

Frequency (MHz)	Signal Type	P _{in} (W)	G _{ps} (dB)	η _D (%)	IRL (dB)
2700	Pulse	3.1	16.9	53.0	-6
2900	(300 μsec, 15% Duty Cycle)	2.9	17.2	49.0	-6
3100		3.0	17.0	47.0	-9

2700-3100 MHz REFERENCE CIRCUIT — 2.0" × 3.0" (5.1 cm × 7.6 cm)

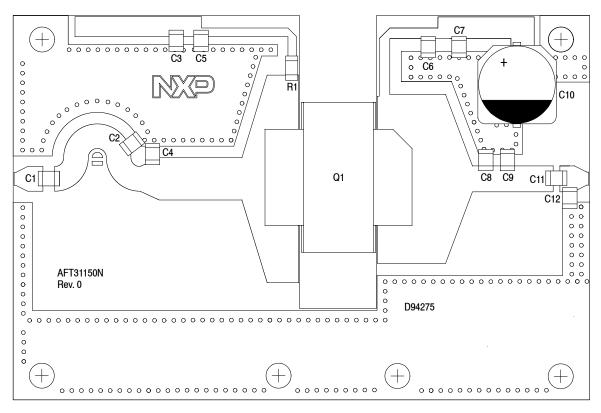


Figure 3. AFT31150N Reference Circuit Component Layout – 2700–3100 MHz

Table 9. AFT31150N Reference Circuit Component Designations and Values - 2700-3100 MHz

Part	Description	Part Number	Manufacturer
C1	3.6 pF Chip Capacitor	ATC800B3R6CT500XT	ATC
C2	0.8 pF Chip Capacitor	ATC800B0R8BT500XT	ATC
C3, C7	2.2 μF Chip Capacitor	C3225X7R2A225K230AB	TDK
C4	0.6 pF Chip Capacitor	ATC800B0R6BT500XT	ATC
C5, C6	3.3 pF Chip Capacitor	ATC800B3R3CT500XT	ATC
C8	0.7 pF Chip Capacitor	ATC800B0R7BT500XT	ATC
C9	0.4 pF Chip Capacitor	ATC800B0R4BT500XT	ATC
C10	220 μF, 50 V Electrolytic Capacitor	MVY50V221MJ10TP	United Chem
C11	4.3 pF Chip Capacitor	ATC800B4R3CT500XT	ATC
C12	0.1 pF Chip Capacitor	ATC800B0R1BT500XT	ATC
Q1	RF High Power LDMOS Transistor	AFT31150N	NXP
R1	10 Ω, 1/4 W Chip Resistor	CRCW120610R0JNEA	Vishay
PCB	Rogers RT6035HTC, 0.030", ϵ_r = 3.5	D94275	MTL

TYPICAL CHARACTERISTICS – 2700–3100 MHz REFERENCE CIRCUIT

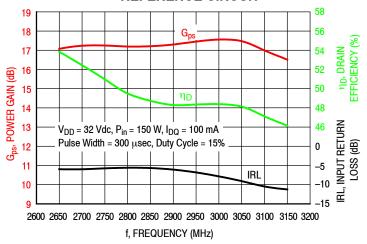


Figure 4. Power Gain, Drain Efficiency and IRL versus Frequency at a Constant Output Power

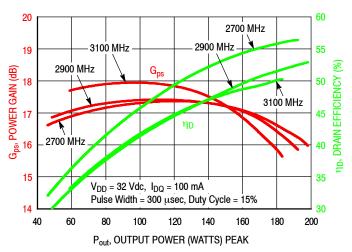


Figure 5. Power Gain and Drain Efficiency versus Output Power

TYPICAL CHARACTERISTICS – 2700–3100 MHz REFERENCE CIRCUIT

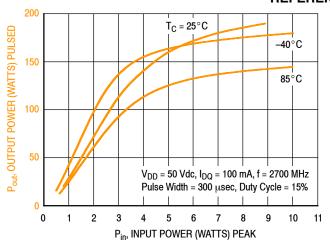


Figure 6. Output Power versus Input Power versus Temperature – 2700 MHz

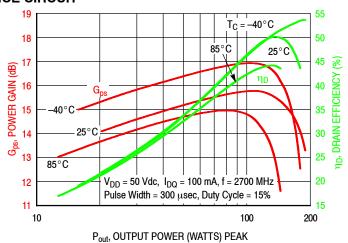


Figure 7. Power Gain and Drain Efficiency versus Output Power – 2700 MHz

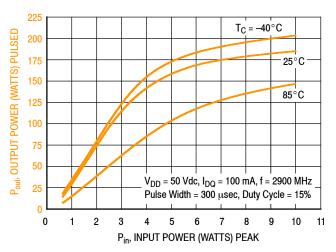


Figure 8. Output Power versus Input Power versus Temperature – 2900 MHz



Figure 9. Power Gain and Drain Efficiency versus Output Power – 2900 MHz

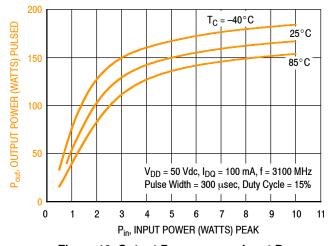


Figure 10. Output Power versus Input Power versus Temperature – 3100 MHz

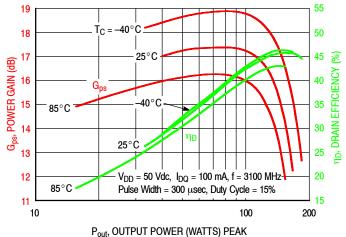
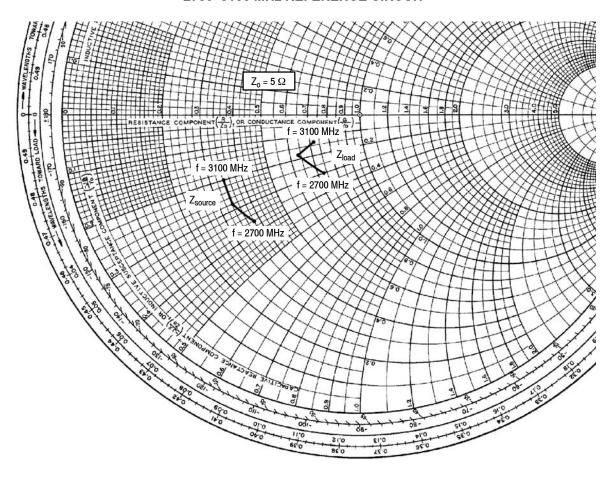



Figure 11. Power Gain and Drain Efficiency versus Output Power – 3100 MHz

2700-3100 MHz REFERENCE CIRCUIT

f MHz	Z _{source} Ω	Z _{load} Ω
2700	1.9 – j1.8	3.7 – j1.5
2900	1.7 – j1.4	3.2 – j0.9
3100	1.7 – j1.0	3.6 – j0.7

 Z_{source} = Test circuit impedance as measured from gate to ground.

 $Z_{load} \quad \ = \quad Test \ circuit \ impedance \ as \ measured \\ from \ drain \ to \ ground.$

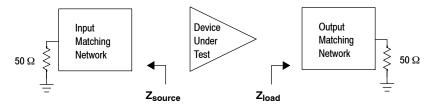


Figure 12. Series Equivalent Source and Load Impedance – 2700–3100 MHz

3100 MHz NARROWBAND PRODUCTION TEST FIXTURE – $3.0" \times 5.0"$ (7.6 cm \times 12.7 cm)

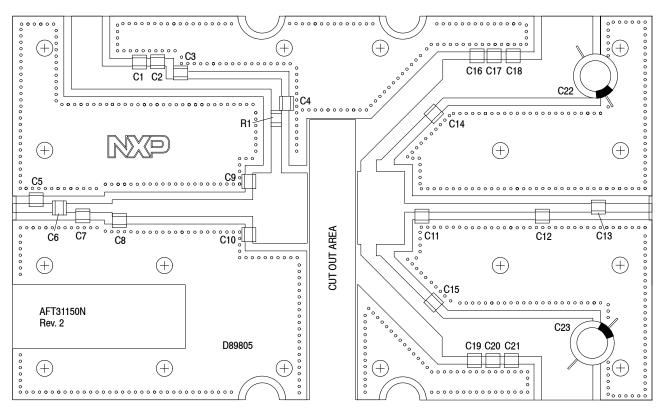


Figure 13. AFT31150N Narrowband Test Circuit Component Layout – 3100 MHz

Table 10. AFT31150N Narrowband Test Circuit Component Designations and Values - 3100 MHz

Part	Description	Part Number	Manufacturer
C1, C18, C21	10 μF Chip Capacitor	C5750X7S2A106M	TDK
C2, C17, C20	1 μF Chip Capacitor	C3225JB2A105K200AA	TDK
C3, C16, C19	0.1 μF Chip Capacitor	C1206C104K1RACTU	Kemet
C4	3.3 pF Chip Capacitor	ATC100B3R3CT500XT	ATC
C5, C8, C9, C10	0.2 pF Chip Capacitor	ATC100B0R2BT500XT	ATC
C6, C13	4.3 pF Chip Capacitor	ATC100B4R3CT500XT	ATC
C7	1.0 pF Chip Capacitor	ATC100B1R0BT500XT	ATC
C11	0.3 pF Chip Capacitor	ATC100B0R3BT500XT	ATC
C12	0.8 pF Chip Capacitor	ATC100B0R8BT500XT	ATC
C14, C15	2.2 pF Chip Capacitor	ATC100B2R2BT500XT	ATC
C22, C23	220 μF, 100 V Electrolytic Capacitor	MCGPR100V227M16X26-RH	Multicomp
R1	20 Ω, 1/4 W Chip Resistor	CRCW120620R0FKEA	Vishay
PCB	Taconic RF35, 0.030", $\epsilon_r = 3.5$	D89805	MTL

TYPICAL CHARACTERISTICS

Figure 14. Power Gain and Drain Efficiency versus Output Power

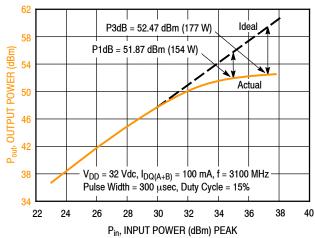


Figure 15. Output Power versus Input Power

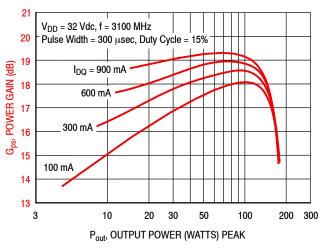


Figure 16. Power Gain versus Output Power

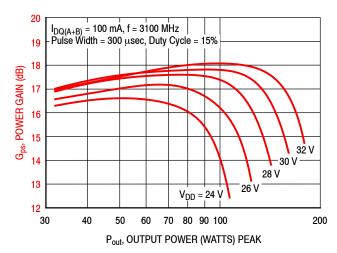


Figure 17. Power Gain versus Output Power and Drain Voltage

3100 MHz NARROWBAND PRODUCTION TEST FIXTURE

f	Z _{source}	Z _{load}
MHz	Ω	Ω
3100	9.5 – j5.3	5.5 + j1.2

 $Z_{source} \ = \ Test \ circuit \ impedance \ as \ measured \ from \\ gate \ to \ ground.$

Z_{load} = Test circuit impedance as measured from drain to ground.

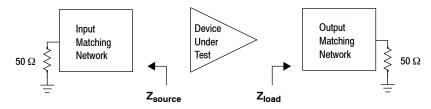
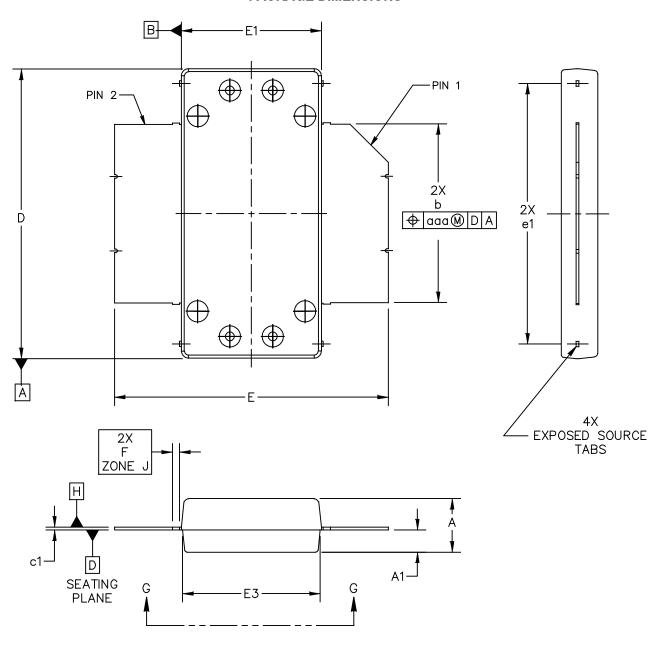
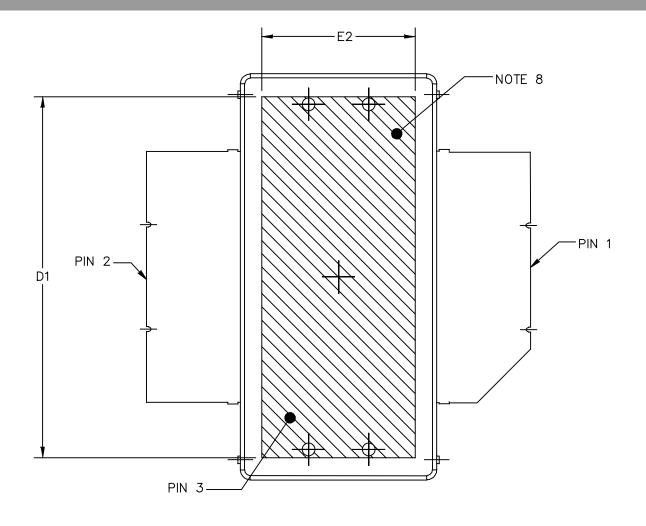




Figure 18. Series Equivalent Source and Load Impedance – 3100 MHz

PACKAGE DIMENSIONS

0	NXP SEMICONDUCTORS N.V. ALL RIGHTS RESERVED	MECHANICAL OU	TLINE	PRINT VERSION NO	T TO SCALE
TITLE:	011700		DOCUME	NT NO: 98ASA10831D	REV: C
	OM780-2 STRAIGHT LEAD		STANDAF	RD: NON-JEDEC	
	SHONOITI ELAD		SOT1693	-1	22 JAN 2016

BOTTOM VIEW VIEW G-G

© NXP SEMICONDUCTORS N.V. ALL RIGHTS RESERVED	MECHANICAL OUTLINE		PRINT VERSION NOT TO SCALE	
TITLE:		DOCUMEN	NT NO: 98ASA10831D	REV: C
OM780-2 STRAIGHT LEAD		STANDAF	RD: NON-JEDEC	
STIVITOTT ELIZA		SOT1693	– 1	22 JAN 2016

NOTES:

- 1. CONTROLLING DIMENSION: INCH
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 3. DATUM PLANE -H- IS LOCATED AT TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE.
- 4. DIMENSIONS "D" AND "E1" DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 PER SIDE. DIMENSIONS "D AND "E1" DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -H-.
- 5. DIMENSION & DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .005 TOTAL IN EXCESS OF THE & DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 6. DATUMS -A- AND -B- TO BE DETERMINED AT DATUM PLANE -H-.
- 7. DIMENSION A1 APPLIES WITHIN ZONE "J" ONLY
- 8. HATCHING REPRESENTS THE EXPOSED AREA OF THE HEAT SLUG. THE DIMENSIONS D1 AND E2 REPRESENT THE VALUES BETWEEN THE TWO OPPOSITE POINTS ALONG THE EDGES OF EXPOSED AREA OF HEAT SLUG.

STYLE 1:

PIN 1 - DRAIN

PIN 2 - GATE

PIN 3 - SOURCE

	IN	INCH MILLIMETER			INCH MILLIMETE		IETER		
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX
A	0. 148	. 152	3. 76	3. 86	b	. 497	. 503	12. 62	12. 78
A1	. 059	. 065	1. 50	1. 65	c1	. 007	.011	0. 18	0. 28
D	. 808	. 812	20. 52	20.62	e 1	. 721	. 729	18. 31	18. 52
D1	. 720		18. 29	9					
E	. 762	. 770	19. 36	5 19. 56	aaa		. 004	0.	10
E1	. 390	. 394	9. 91	10.01					
E2	. 306		7. 77						
E3	. 383	. 387	9. 73	9. 83					
F	. 025 BSC 0. 635 BSC								
	© NXP SEMICONDUCTORS N.V. ALL RIGHTS RESERVED MECHANI			MECHANICA	AL OU	TLINE	PRINT VER	SION NOT T	O SCALE
TITLE:	TITLE:					DOCUMEN	NT NO: 98ASA	10831D	REV: C
OM780-2 STRAIGHT LEAD					STANDAR	D: NON-JEDE	ON-JEDEC		
STIVAIGITI ELAD					S0T1693	-1	22	JAN 2016	

PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS

Refer to the following resources to aid your design process.

Application Notes

- · AN1907: Solder Reflow Attach Method for High Power RF Devices in Over-Molded Plastic Packages
- AN1955: Thermal Measurement Methodology of RF Power Amplifiers

Engineering Bulletins

EB212: Using Data Sheet Impedances for RF LDMOS Devices

Software

- Electromigration MTTF Calculator
- RF High Power Model
- .s2p File

Development Tools

· Printed Circuit Boards

To Download Resources Specific to a Given Part Number:

- 1. Go to http://www.nxp.com/RF
- 2. Search by part number
- 3. Click part number link
- 4. Choose the desired resource from the drop down menu

REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description
0	May 2017	Initial release of data sheet

How to Reach Us:

Home Page: nxp.com

Web Support: nxp.com/support

Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

NXP, the NXP logo, and Airfast are trademarks of NXP B.V. All other product or service names are the property of their respective owners.

© 2017 NXP B.V.

