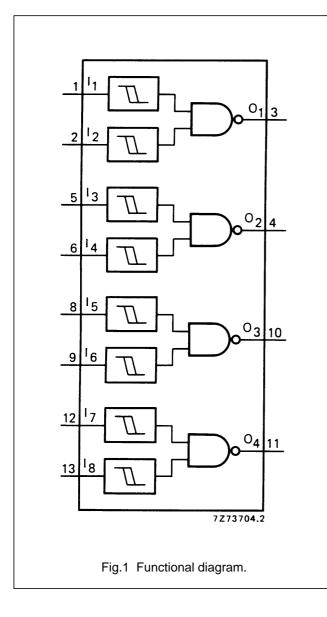

INTEGRATED CIRCUITS

Product specification File under Integrated Circuits, IC04 January 1995


HEF4093B

gates

Quadruple 2-input NAND Schmitt trigger

DESCRIPTION

The HEF4093B consists of four Schmitt-trigger circuits. Each circuit functions as a two-input NAND gate with Schmitt-trigger action on both inputs. The gate switches at different points for positive and negative-going signals. The difference between the positive voltage (V_P) and the negative voltage (V_N) is defined as hysteresis voltage (V_H).

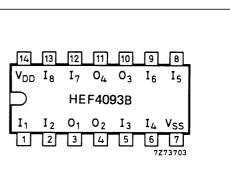
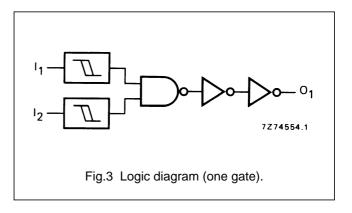



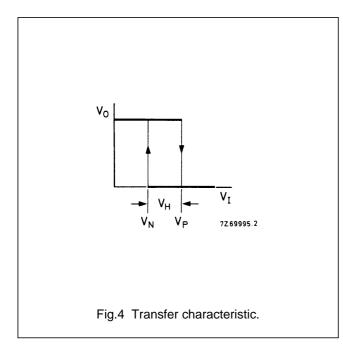
Fig.2 Pinning diagram.

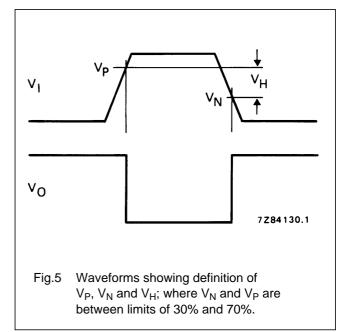
HEF4093BP(N):	14-lead DIL; plastic
	(SOT27-1)
HEF4093BD(F):	14-lead DIL; ceramic (cerdip)
	(SOT73)
HEF4093BT(D):	14-lead SO; plastic
	(SOT108-1)
· · · · · ·	

(): Package Designator North America

FAMILY DATA, I_{DD} LIMITS category GATES

See Family Specifications


Quadruple 2-input NAND Schmitt trigger


HEF4093B gates

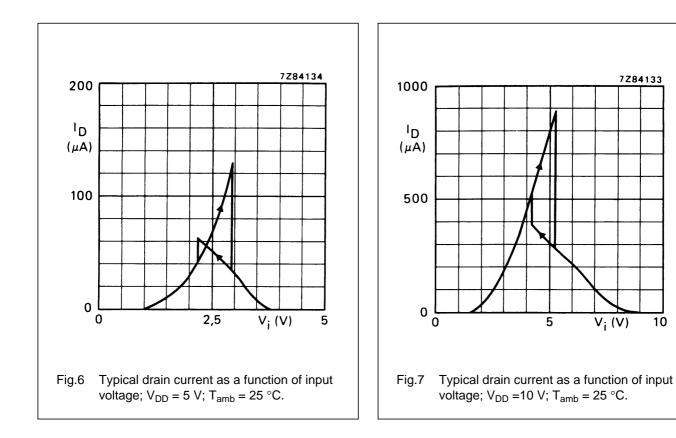
DC CHARACTERISTICS

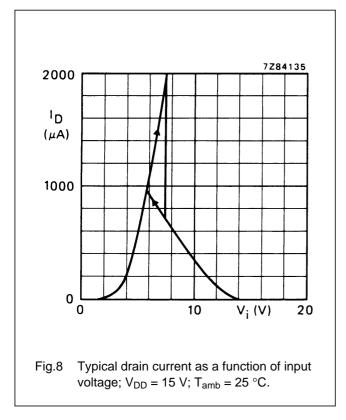
 V_{SS} = 0 V; T_{amb} = 25 °C

	V _{DD} V	SYMBOL	MIN.	TYP.	MAX.	
Hysteresis	5		0,4	0,7	_	V
voltage	10	V _H	0,6	1,0	_	V
	15		0,7	1,3	_	V
Switching levels	5		1,9	2,9	3,5	V
positive-going	10	VP	3,6	5,2	7	V
input voltage	15		4,7	7,3	11	V
negative-going	5		1,5	2,2	3,1	V
input voltage	10	V _N	3	4,2	6,4	V
	15		4	6,0	10,3	V

Quadruple 2-input NAND Schmitt trigger

HEF4093B gates


AC CHARACTERISTICS


 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD} V	SYMBOL	TYP.	MAX.	TYPICAL EXTRAPOLATION FORMULA
Propagation delays	5		90	185 ns	63 ns + (0,55 ns/pF) C _L
$I_n \rightarrow O_n$	10	t _{PHL}	40	80 ns	29 ns + (0,23 ns/pF) C _L
HIGH to LOW	15		30	60 ns	22 ns + (0,16 ns/pF) C _L
	5		85	170 ns	58 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}	40	80 ns	29 ns + (0,23 ns/pF) C _L
	15		30	60 ns	22 ns + (0,16 ns/pF) C _L
Output transition times	5		60	120 ns	10 ns + (1,0 ns/pF) C _L
HIGH to LOW	10	t _{THL}	30	60 ns	9 ns + (0,42 ns/pF) C _L
	15		20	40 ns	6 ns + (0,28 ns/pF) C _L
	5		60	120 ns	10 ns + (1,0 ns/pF) C _L
LOW to HIGH	10	t _{TLH}	30	60 ns	9 ns + (0,42 ns/pF) C _L
	15		20	40 ns	6 ns + (0,28 ns/pF) C _L

	V _{DD} V	TYPICAL FORMULA FOR P (μ W)	
Dynamic power	5	1300 f _i + Σ (f _o C _L) × V _{DD} ²	where
dissipation per	10	$6400 \; f_i + \Sigma (f_o C_L) \times V_{DD}{}^2$	f _i = input freq. (MHz)
package (P)	15	18 700 f _i + Σ (f _o C _L) × V _{DD} ²	f _o = output freq. (MHz)
			C _L = load capacitance (pF)
			Σ (f _o C _L) = sum of outputs
			V _{DD} = supply voltage (V)

Quadruple 2-input NAND Schmitt trigger

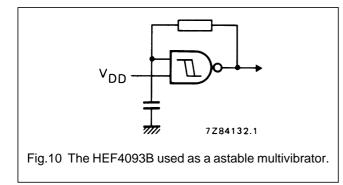
January 1995

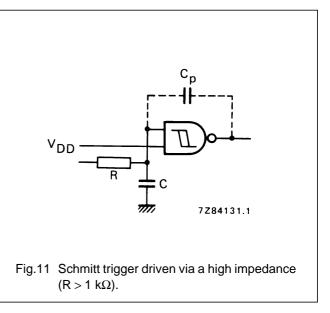
5

HEF4093B gates

HEF4093B

gates


Quadruple 2-input NAND Schmitt trigger


Fig.9 Typical switching levels as a function of supply voltage V_{DD}; T_{amb} = 25 °C.

APPLICATION INFORMATION

Some examples of applications for the HEF4093B are:

- Wave and pulse shapers
- Astable multivibrators
- Monostable multivibrators.

If a Schmitt trigger is driven via a high impedance (R > 1 k Ω) then it is necessary to incorporate a capacitor C of such value that:

$$\frac{C}{C_p} > \frac{V_{DD} - V_{SS}}{V_H}$$
, otherwise oscillation can occur on the edges of a pulse.

C_p is the external parasitic capacitance between inputs and output; the value depends on the circuit board layout.

Note

Downloaded from Arrow.com.

The two inputs may be connected together, but this will result in a larger through-current at the moment of switching.

January 1995