2A, Synchronous Boost Flash LED Driver MP3331 # with I²C Interface #### DESCRIPTION The MP3331 is a highly-efficient, 2A, single flash LED driver in a very compact package for highresolution camera phones that improves image and video quality in low-light environments. The device operates in a 1/2/3/4MHz synchronous DC/DC boost converter to provide an optimized solution for smaller PCB spaces with higher efficiency. The MP3331 features a standard I²C interface. single LED channel, rich protection modes, and high power density and performances. It supports flash/assist/torch/indicator/5V DC modes. The cathode of the flash LED is referenced to GND. which improves thermal performance. It is available in a WLCSP9-1.7mm x 1.7mm package. #### **FEATURES** - 2.7V to 5.5V Input Voltage - 1/2/3/4MHz Selectable Switching Frequency - Switching Frequency Foldback Function - 400kHz I²C Compatible Interface - Standby/Flash/Assist/Torch/Indicator/5V DC Mode #### **FLASH MODE:** Up to 2A Programmable Current with +/-7% Accuracy #### ASSIST/TORCH MODE: Up to 508mA Programmable Current with +/-7% Accuracy #### INDICATOR MODE: Works in 31.5kHz PWM Dimming Mode with 2/16, 3/16, 4/16, 5/16 Duty Cycle #### **5V DC MODE:** - Fixed 5V Output Voltage - External Torch/Strobe Pin - Low-Battery Voltage Protection - Pre-Flash for Auto Detect Load Condition - LED Short/Open Protection - **VOUT-GND Short Protection** - Over-Voltage Protection - Over-Temperature Protection - Input Under-Voltage Lockout Protection - Thermal Protection - Input to Output Disconnection Function - Available in a WLCSP9-1.7mm x 1.7mm Package ## **APPLICATIONS** - Camera Phone LED Flash - **Tablets** - Digital Still Camera All MPS parts are lead-free, halogen-free, and adhere to the RoHS directive. For MPS green status, please visit the MPS website under Quality Assurance. "MPS" and "The Future of Analog IC Technology" are registered Ttademarks of Monolithic Power Systems, Inc. # **TYPICAL APPLICATION** **Typical Application Circuit** # **ORDERING INFORMATION** | Part Number* | Package | Top Marking | |--------------|-------------------------|-------------| | MP3331GC | WLCSP-9 (1.7mm x 1.7mm) | See Below | ^{*} For Tape & Reel, add suffix –Z (e.g. MP3331GC) # **TOP MARKING** CMY LLL CM: Product code of MP3331GC Y: Year code LLL: Lot number # **PACKAGE REFERENCE** # **Thermal Resistance** (4) **θ**_{JA} **θ**_{JC} WLCSP-9 (1.7mm x 1.7mm)....110....0.5..°C/W #### NOTES: - 1) Exceeding these ratings may damage the device. - 2) The maximum allowable power dissipation is a function of the maximum junction temperature T_J (MAX), the junction-to-ambient thermal resistance θ_{JA}, and the ambient temperature T_A. The maximum allowable continuous power dissipation at any ambient temperature is calculated by P_D (MAX) = (T_J (MAX)-T_A)/θ_{JA}. Exceeding the maximum allowable power dissipation will produce an excessive die temperature, causing the regulator to go into thermal shutdown. Internal thermal shutdown circuitry protects the device from permanent damage. - The device is not guaranteed to function outside of its operating conditions. - 4) Measured on JESD51-7, 4-layer PCB. # **ELECTRICAL CHARACTERISTICS** V_{IN} = 3.6V, T_A = 25°C, unless otherwise noted. | Parameters | Symbol | Condition | Min | Тур | Max | Units | |---------------------------------------|------------------------|--|-----|------|-----|-------| | Supply | • | | | | | • | | Operating input voltage | Vin | | 2.7 | | 5.5 | V | | Input UVLO threshold | V _{IN_UVLO} | Rising edge | | 2.5 | | V | | Input UVLO hysteresis | | | | 150 | | mV | | Standby current | I _{Q_STANDBY} | V_{IN} = 2.7V to 5.5V, I ² C active | | | 10 | μA | | Operating quiescent current | ΙQ | V _{IN} = 3.6V, No switching, pass mode | | 0.95 | | mA | | Switching Regulator | | | | | | | | Switching frequency | fs | Fs = 4MHz | 3.6 | 4 | 4.4 | MHz | | Minimum on time | ton_min | | | 50 | | ns | | NMOS on resistance | R _{DSON_N} | V _{IN} = 3.6V | | 80 | | mΩ | | PMOS on resistance | R _{DSON_P} | V _{IN} = 3.6V | | 120 | | mΩ | | Constant DC output voltage | V _{OUT_5V} | 5V DC mode | | 5 | | V | | Led at a const Page | I _{LIMIT} | Code setting = 00, max duty cycle ⁽⁵⁾ | | 1.9 | | Α | | Inductor current limit | | Code setting = 11, max duty cycle ⁽⁵⁾ | | 4.2 | | Α | | LED Driver | | | | | | | | Flach current cotting | lies sivou | Flash mode, value setting = 000000 | | 0 | | mA | | Flash current setting | | Flash mode, value setting = 001010 | 295 | 317 | 339 | mA | | Torch current setting | lies reserv | Assist light/torch mode, value setting = 000000 | | 0 | | mA | | Toron current setting | LED_TORCH | Assist light /torch mode, value setting = 001010 | 295 | 317 | 339 | mA | | Current source headroom | V_{HD} | Current = 200mA | | 150 | | mV | | voltage | V HD | Current = 1500mA ⁽⁵⁾ | | 250 | | mV | | Current ramp-up step time | tramp_up | TUP_I = 000 | | 8 | | μs | | Current ramp-down step time | tramp_down | | | 2 | | μs | | Flash to TX current settling time | t settle | TX from low to high, ILED from 1500mA to 31.7mA | | | 5 | μs | | Digital Input | | | | | | | | Input logic-low voltage | | | | | 0.4 | V | | Input logic-high Voltage | | | 1.2 | | | V | | · · · · · · · · · · · · · · · · · · · | | | | | | | # **ELECTRICAL CHARACTERISTICS** (continued) $V_{IN} = 3.6V$, $T_A = 25$ °C, unless otherwise noted. | Parameters | Symbol | Condition | Min | Тур | Max | Units | |--|----------------------|---|---------------------------|------------|-----|------------| | Strobe/Torch/TX pull-down resistor | | | | 250 | | kΩ | | Protection | ı | T | I | 1 | | 1 | | Time-out time | tтімеоит | Time setting code = 0011 | 190 | 200 | 210 | ms | | Over-voltage threshold | V _{OVP} | | 5.2 | 5.5 | 5.8 | V | | LED short detection voltage | V _{LED_ST} | | | 1 | | V | | V _{OUT} short blanking time | T _{OUT_ST} | VOUT <vin-1v and="" bit="" enable="" is="" on.<="" td="" when=""><td></td><td>5</td><td></td><td>ms</td></vin-1v> | | 5 | | ms | | LED open detection voltage | V _{LED_OP} | | | 90 | | mV | | Thermal shutdown threshold ⁽⁵⁾ | T _{j_SD} | | | 150 | | $^{\circ}$ | | Adaptive thermal threshold ⁽⁵⁾ | | | | 130 | | $^{\circ}$ | | Low-battery threshold | V _{BAT_LOW} | Code Setting = 000 Code Setting =110 | | 3.0
3.6 | | V | | I ² C Interface | | • | | | | | | Input logic low | VIL | | 0 | | 0.4 | V | | Input logic high | V _{IH} | | 1.3V | | | V | | Output logic low | Vol | I _{LOAD} = 3mA | | | 0.4 | V | | SCL clock frequency | FscL | | | | 400 | kHz | | SCL high time | T _{HIGH} | | 0.6 | | | μs | | SCL low time | T _{LOW} | | 1.3 | | | μs | | Data setup time | T _{SU,DAT} | | 100 | | | ns | | Data hold time | T _{HD,DAT} | | 0 | | 0.9 | μs | | Setup time for repeated start | T _{SU,STA} | | 0.6 | | | μs | | Hold time for start | T _{HD,STA} | | 0.6 | | | μs | | Bus free time between a start and a stop condition | T _{BUF} | | 1.3 | | | μs | | Setup time for stop condition | T _{SU,STO} | | 0.6 | | | μs | | Rise time of SCL and SDA | T _R | | 20+0.
1*Св | | 300 | ns | | Fall time of SCL and SDA | T _F | | 20+0.
1*C _B | | 300 | ns | | Pulse width of suppressed spike | T _{SP} | | 0 | | 50 | ns | | Capacitance bus for each bus line | Св | | | | 400 | pF | #### NOTES: 5) Guaranteed by design. Figure 1: I²C Compatible Interface Timing Diagram # TYPICAL PERFORMANCE CHARACTERISTICS V_{IN} = 3.3V, 1LED, FL_TIM = 100ms, L = 1 μ H, T_A = 25°C, unless otherwise noted. #### **LED Enable** # **TYPICAL PERFORMANCE CHARACTERISTICS (continued)** V_{IN} = 3.3V, 1LED, FL_TIM = 100ms, L = 1 μ H, T_A = 25°C, unless otherwise noted. # **PIN FUNCTIONS** | Pin# | Name | Description | |------|--------|--| | A1 | OUT | Boost converter output. | | A2 | sw | Boost converter switching node. | | A3 | GND | Ground. | | B1 | LED | Current source for LED. Connect the anode of LED to LED. | | B2 | STR | Strobe signal input STR synchronizes the flash pulse to the image capture. If STR is floated, internally pull STR to low weakly. | | В3 | IN | Input supply. IN provides the power for the internal power and logic circuit. IN must be bypassed locally. | | C1 | TOR/TX | Torch signal input or synchronization input signal for RF transmission signal. If TOR/TX is floated, internally pull TOR/TX to low weakly. | | C2 | SDA | I ² C interface clock data input. | | C3 | SCL | I ² C interface clock signal. | # **FUNCTIONAL BLOCK DIAGRAM** Figure 2: MP3331 Functional Block Diagram #### **OPERATION** The MP3331 is a single-channel flash LED driver with an I2C interface for a camera flash that supports good image capture. It works in flash mode, assist mode, torch mode, indicator mode, and fixed 5V DC output mode. # **LED Driver Operation** The MP3331 uses PWM mode with peak current control to regulate the LED current. It selectable 1M/2M/3M/4MHz works switching frequency with a synchronous rectifier PMOS. When enabled, the synchronous PMOS works as a 350mA current source to charge the output capacitor until V_{OUT} rises above the 2.3V. The device will change to boost switching mode if the voltage across the current source is less than the target reference. If V_{IN} is very close to V_{OUT}, the IC works in boost switching mode and pass mode automatically to minimize the power loss. In pass mode, the synchronous PMOS is turned on completely. During the current startup, the current ramps up smoothly step by step until the target setting current is reached. Configuration Mode STR MOD 5V MOD LED MOD TX/TOR **STR** LED EN Torch High Х 0 Х 00 Χ 1 Χ Χ 10 Assist light Χ Χ Χ 1 Χ Χ 01 Indicator Χ High 1 1 Χ 11 Flash Χ 1 0 Χ 11 Flash Χ High High 1 1 Х 00 Torch to flash 1 Χ **Table 1: Mode Configuration** ## Standby Mode Χ Χ In default, if V_{IN} is higher than UVLO, the device changes to standby mode. The I²C is active and is ready to communicate with the host. Table 1 shows all work modes for MP3331. High Χ 1 Χ #### **Torch Mode** In standby mode, if TOR goes from low to high (TX/TOR = 1), the device switches to torch mode, and the current ramps up step by step after setting LED EN to 1. The current for LED is set through register I TOR. The ramping up slew rate is set by register TUP_I. The current is disabled by pulling TOR to low or by setting LED EN bits to 0. By pulling TOR to low, LED EN and LED MOD bits will reset automatically to default if LED SD is 0 (see Figure 3). 10 Χ Assist to flash 5V Figure 3: Torch Mode #### **Assist Mode** Х 1 To enter assist mode, set LED MOD register to 10 and LED EN to 1. The current ramps up to the target value, which is set by I TOR. The ramping up slew rate is set by register TUP I. The current is disabled by switching to standby mode or by setting LED EN bits to 0 (see Figure 4). Figure 4: Assist Mode #### **Indicator Mode** The device enters indicator mode, which provides a low current output when LED MOD is set to 01, and LED EN is set to 1. In this mode, the driver current sources the output current in 31.5kHz PWM mode. The current amplitude is set by I TOR while the duty cycle is set by the INDI PWM register. When disabled, switch to standby mode or set LED EN bits to 0 (see Figure 5). Figure 5: Indicator Mode #### Flash Mode The device works in flash mode in the following ways: #### 1. Hardware and level sensitive mode. In this mode, STR MOD = 1, STR LV = 1, LED_EN = 1, and LED_MOD = 11. The flash current starts ramping up after STR goes high. The current is set by I FL, and the ramping up time is set by TUP_I. The flash current ends when STR is pulled to low. If LED SD = 0, the LED MOD is reset to standby mode, and LED EN is set to 0 after the flash. If LED SD = 1, the LED MOD, and LED EN are not reset. If the flash timer set by FL_TIM ends before STR goes low, the flash current terminates immediately. LED_MOD and LED_EN are reset to the default value, and the time-out fault bit FT TO is set to 1 and is not cleared until read back or input power reset (see Figure 6). Figure 6: Hardware and Level Sensitive Mode #### 2. Hardware and edge sensitive mode. In this mode, STR MOD = 1, STR LV = 0, LED_EN = 1, and LED_MOD = 11. The flash current starts ramping up after STR goes high. The current is set by I_FL, and the ramping up time is set by TUP I. The flash current ends when the flash timer set by FL TIM ends. If LED_SD = 0, the LED_MOD is reset to standby mode, and LED EN is set to 0 after the flash. If LED_SD = 1, the LED_MOD, and LED_EN are not reset (see Figure 7). Figure 7: Hardware and Edge Sensitive Mode ## 3. Software and edge sensitive mode In this mode, STR_MOD = 0, LED_EN = 1, and LED_MOD = 11. The current is set by I_FL, and the ramping up time is set by TUP_I. The flash current ends when the flash timer set by FL_TIM ends. If LED_SD = 0, the LED_MOD is reset to standby mode, and LED_EN is set to 0 after the flash. If LED_SD = 1, the LED_MOD, and LED_EN are not reset (see Figure 8). Figure 8: Software and Edge Sensitive Mode #### **Torch Mode to Flash Mode** During torch mode, the device can change to flash mode from torch mode directly when STR goes from low to high (if STR_MOD = 1). After the flash, the operation is the same as described in the "Flash Mode" section (see Figure 9). Figure 9: Torch Mode to Flash Mode #### Assist Mode to Flash Mode During assist-light mode, the device can change to flash mode from assist-light mode directly when STR goes from low to high (if STR_MOD = 1). After the flash, the operation is the same as described in the "Flash Mode" section (see Figure 10). Figure 10: Assist Mode to Flash Mode ## **5V DC Output Mode** If 5V_MOD is set to 1, the device works in a fixed 5V DC output mode, and the control loop is taken over by the voltage loop. Note that the LED current sources can still output current if the mode conditions are met (as described above). Care must be taken to ensure thermal temperatures are ok because the 5V powers the LED directly. To avoid this, it is recommended to set LED_EN to 0 during the 5V DC mode (see Figure 11). Figure 11: 5V DC Mode #### **Switching Frequency Setting** The switching frequency is selected by SW_FS bits. 1M/2M/3M/4MHz are available to optimize efficiency. #### **Switching Frequency Foldback** In default 4MHz switching mode, if the voltage across the current source is larger than the value set by the register bits VTH_PAS, the IC switches to 1MHz mode to improve efficiency and EMI. In 1MHz mode, the switching frequency can be stretched down according to the load condition with FS_SD =0. The IC goes into pass mode (which turns on the synchronous PMOS fully) if the input voltage is high enough. #### **Current Reduction** When the MP3331 works in flash mode, output current reduction may occur due to the following conditions: ## 1. TX is high. During flash mode, if TOR/TX goes from low to high, the flash current drops to the current set by I_TX in less than 5µs and sets the FT_TX bit to 1. If TX goes low, the current ramps up to the flash current again (see Figure 12). Figure 12: Flash Mode when TX is Active # Low battery voltage threshold is triggered. During a flash pulse, if the battery voltage drops below the threshold set by VBL_RUN, the current reduces step-by-step with a 2µs/step until the battery voltage rises up to the specific low battery voltage threshold. Actual current in the IFL_ACT register can be read back. The minimum current caused by the current reduction in IFL_MIN can be read back after the flash. #### **Low Battery Voltage Protection** The device provides low battery voltage protection in flash mode in the following ways: - 1. Before the flash, if the input voltage is lower than the threshold set by VBL_RUN, the device remains disabled (if VBL_SD = 1 and sets the fault bit FT_VBATL to 1). If VBL_SD = 0, the device ramps to the current set by I_TX and sets the fault bit FT_VBATL to 1. The fault bit is cleared after read back or the input power resets - 2. During flash start-up, if the input voltage is lower than the threshold set by VBL_RUN, the current stops ramping. The fault bit FT_VBATL is set. During the flash pulse, if the input voltage is lower than the threshold set by VBL_RUN, the current ramps down step-by-step. The fault bit is set until read back or the input power resets. After the flash, the minimum current caused by the current reduction is read back through the IFL_MIN register. The IFL_MIN value holds until the next flash occurs or the power resets. The actual current is read back through IFL_ACT during flash time. This function tells the device how much flash current can be drawn from the battery for the next flash. Thus, it is possible to do a pre-flash function and provide continuous stable flash current according to IFL MIN information (see Figure 13). Figure 13: Pre-Flash Operation #### **VOUT-GND Short Protection** If VOUT<VIN-1V, the device stops switching and disconnects the synchronous PMOS to avoid drawing a very large current from the battery. Once the device stops switching, set the FT_VOSC bit to 1 and reset the mode setting. The fault bit remains until read back or power reset. #### **LED-GND Short Protection** If VLED < 1V & ILED > 25mA, the IC marks off the current source and resets the mode setting bits. Then the fault bit FT_LEDSC is set. The fault bit FT_LEDSC is 1 until read back or power reset. #### **LED Open Protection** If VOUT - VLED < 90mV & VOUT > 5.5V, the IC stops switching and resets the mode setting bits. Then the fault bits FT_OVP and FT_LEDOP are set. The fault bits FT_OVP and FT_LEDOP are 1 until read back or power reset. #### **Output Over-Voltage Protection** If VOUT > 5.5V, the device stops switching and resumes normal operation until VOUT drops below 5.2V. The fault bit FT_OVP is 1 until read back or power reset. #### **Junction Over-Temperature Protection** If Tj > 130° C, the flash current drops to the current set by I_TX (if LED_OTAD = 1). The fault bit FT_OTP is set. If Tj > 150° C, the device stops switching and resets the mode setting. The fault bit FT_OTP has to be cleared to 0 by read back or power reset before the IC will re-start. #### **Time-Out Protection** If the device works in flash mode with hardware and level sensitive enabled, the time-out protection triggers when the STR high-level pulse is longer than the timer set by FL_TIM. The device stops switching and resets the mode setting. The fault bit is 1 until read back or power reset before the IC re-starts. #### **UVLO Protection** If the VIN drops below the UVLO threshold, the device stops, and all the registers are reset to default. # I²C Interface Register Description #### I²C Chip Address After the start condition, the I²C compatible master sends a 7-bit address followed by an eighth read (read: 1) or write (write: 0) bit. The following bit indicates the register address to/from which the data will be written/read (see Figure 14 and the Tables below). Figure 14: I²C Compatible Device Address # **Register Mapping:** | Add | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | |-----|--------------|----------|----------|----------|----------|----------|-----------|-----------| | 00H | DEV_ID4 | DEV_ID3 | DEV_ID2 | DEV_ID1 | DEV_ID0 | REV_ID2 | REV_ID1 | REV_ID0 | | 01H | STR_LV | STR_MOD | STR_POL | LED_EN | TX_TOR | LED_MOD1 | LED_MOD0 | 5V_MOD | | 02H | NA | NA | NA | IL_PEAK1 | IL_PEAK0 | FS_SD | NA | NA | | 03H | FL_TIM3 | FL_TIM2 | FL_TIM1 | FL_TIM0 | LED_SD | NA | SW_FS1 | SW_FS0 | | 04H | VBL_RUN2 | VBL_RUN1 | VBL_RUN0 | VBL_SD | NA | NA | NA | NA | | 05H | LED_OTA
D | TUP_I2 | TUP_I1 | TUP_I0 | VTH_PAS1 | VTH_PAS0 | INDI_PWM1 | INDI_PWM0 | | 06H | NA | NA | I_FL5 | I_FL4 | I_FL3 | I_FL2 | I_FL1 | I_FL0 | | 07H | NA | NA | I_TX5 | I_TX4 | I_TX3 | I_TX2 | I_TX1 | I_TX0 | | Н80 | NA | NA | IFL_ACT5 | IFL_ACT4 | IFL_ACT3 | IFL_ACT2 | IFL_ACT1 | IFL_ACT0 | | 09H | NA | NA | IFL_MIN5 | IFL_MIN4 | IFL_MIN3 | IFL_MIN2 | IFL_MIN1 | IFL_MIN0 | | ОАН | NA | NA | I_TOR5 | I_TOR4 | I_TOR3 | I_TOR2 | I_TOR1 | I_TOR0 | | 0ВН | FT_VBATL | FT_OVP | FT_VOSC | FT_LEDSC | FT_OTP | FT_TO | FT_TX | NA | | 0СН | NA FT_LEDOP | **Table 1: Chip ID Register** | | Addr: 0x00 | | | | | | | | | |-----|------------|--------|---------|-------------|--|--|--|--|--| | Bit | Bit Name | Access | Default | Description | | | | | | | 2:0 | REV_ID | R | 000 | Revision ID | | | | | | | 7:3 | DEV_ID | R | 00011 | Device ID | | | | | | **Table 2: Mode Setting Register** | | Addr: 0x01 | | | | | | | | | |-----|------------|--------|---------|---|--|--|--|--|--| | Bit | Bit Name | Access | Default | Description | | | | | | | 7 | STR_LV | RW | 1 | Flash mode trigger mode with STR signal. 0 = edge sensitive; 1 = level sensitive. | | | | | | | 6 | STR_MOD | RW | 1 | STR enable bit. 0 = software enable; 1 = hardware enable. | | | | | | | 5 | STR_POL | RW | 1 | STR signal input active polarity. 0 = active low; 1 = active high. | | | | | | | 4 | LED_EN | RW | 0 | LED current source enable bit. 0 = LED current sink disable; 1 = enable | | | | | | | 3 | TX_TOR | RW | 0 | TX mode or torch mode selection bit; 0 indicates TX/TOR used for TX signal; 1 indicates TX/TOR used for torch signal. In flash mode, TX/TOR is forced to be used as a TX signal pin regardless of what this bit is. | | | | | | | 2:1 | LED_MOD | RW | 00 | Device mode setting bits. 00 = standby/torch mode; 01 = indicator mode; 10 = assist light mode; 11 = flash mode. | | | | | | | 0 | 5V_MOD | RW | 0 | 5V DC output enable bit.
0 = disable; 1 = enable. | | | | | | # **Table 3: Peak Current Setting Register** | | Addr: 0x02 | | | | | | | | |-----|------------|--------|---------|---|--|--|--|--| | Bit | Bit Name | Access | Default | Description | | | | | | 7:5 | NA | RW | 000 | Reserved. | | | | | | 4:3 | IL_PEAK | RW | 01 | Inductor current limit setting bits.
00 = 1.9A, 01 = 2.8A,10 = 3.6A,11 = 4.2A | | | | | | 2 | FS_SD | RW | 0 | Disable switching frequency stretching down from 1MHz if VIN voltage is close to VOUT voltage. 0 = Enable Fs stretching down function. 1 = Disable Fs stretching down function. | | | | | | 0:1 | NA | RW | NA | Reserved. | | | | | **Table 4: Flash Timer Setting Register** | | Addr: 0x03 | | | | | | | | |-----|------------|--------|---------|--|--|--|--|--| | Bit | Bit Name | Access | Default | Description | | | | | | 7:4 | FL_TIM | RW | 0001 | Flash timer setting bits. 50ms to 800ms, 50ms/step. 0000 = 50ms; 0001 = 100ms;; 1111 = 800ms. | | | | | | 3 | LED_SD | RW | 0 | LED_MOD and LED_EN resetting control bit. 0 = reset LED_MOD and LED_EN to default value after flash or torch. 1 = no reset. | | | | | | 2 | NA | RW | 0 | Reserved. | | | | | | 1:0 | SW_FS | RW | 00 | Switching frequency setting bits. 00 = 4MHz; 01 = 3MHz; 10 = 2MHz;11 = 1MHz. | | | | | **Table 5: Low Battery Voltage Setting Register** | | Addr: 0x04 | | | | | | | | | |-----|------------|--------|---------|---|--|--|--|--|--| | Bit | Bit Name | Access | Default | Description | | | | | | | 7:5 | VBL_RUN | RW | 111 | Low battery voltage setting bits. If VIN drops below this voltage during start-up, the current ramping stops. If VIN drops below this voltage during the flash current pulse, the current is decreased until VIN is higher than its threshold. It works only in flash mode. 000 = 3V; 001 = 3.1V;110 = 3.6V; 111 = disabled; 0.1V per step. | | | | | | | 4 | VBL_SD | RW | 1 | Device disabled or reduce the flash current selection bit when VIN is less than the threshold set by VBL_RUN before the flash. 1 = device disabled; 0 = Enable and the current ramps up to the current set by I_TX. | | | | | | | 3:0 | NA | RW | NA | NA | | | | | | **Table 6: Indicator Register** | | Addr: 0x05 | | | | | | | | |-----|------------|--------|---------|--|--|--|--|--| | Bit | Bit Name | Access | Default | Description | | | | | | 7 | LED_OTAD | RW | 0 | Adaptive thermal flash current control bit. 1 = current reduced to the current set by I_TX when Tj >130 $^{\circ}$ C; 0 = disable when Tj >150 $^{\circ}$ C. | | | | | | 6:4 | TUP_I | RW | 001 | Current ramp-up time per step. $000 = 8\mu s$; $001 = 16\mu s$; $111 = 64\mu s/step$. $111 reserved$. | | | | | | 3:2 | VTH_PAS | RW | 01 | Defines the threshold when Fs drops to 1MHz or switches to pass mode from boost mode. 00 = 300mV, 01 = 450mV, 10 = 600mV, 11 = 750mV. | | | | | | 1:0 | INDI_PWM | RW | 00 | PWM duty cycle of 31.5kHz in indicator mode. 00 = 2/16; 01 = 3/16; 10 = 4/16; 11 = 5/16. | | | | | # **Table 7: LED Flash Current Setting Register** | | Addr: 0x06 | | | | | | | | |-----|------------|--------|---------|--|--|--|--|--| | Bit | Bit Name | Access | Default | Description | | | | | | 7:6 | NA | RW | NA | Reserved. | | | | | | 5:0 | I_FL | RW | 010000 | LED flash current setting bits.
0 to 2000mA, 31.7mA/step.
000000 = 0mA; 000001= 31.7mA111111 =
2000mA. (Default 010101 = 508mA) | | | | | # **Table 8: TX Current Setting Register** | | Addr: 0x07 | | | | | | |-----|------------|--------|---------|---|--|--| | Bit | Bit Name | Access | Default | Description | | | | 7:6 | NA | RW | NA | Reserved. | | | | 5:0 | I_TX | RW | 010000 | Defines the flash current in flash mode if TX is high. 0 to 2000mA, 31.7mA/step. 000000 = 0mA; 000001= 31.7mA111111 = 2000mA. (Default 010000 = 508mA). | | | **Table 9: Actual Flash LED Current Register** | | Addr: 0x08 | | | | | | |-----|------------|--------|---------|--|--|--| | Bit | Bit Name | Access | Default | Description | | | | 7:6 | NA | R | NA | Reserved. | | | | 5:0 | IFL_ACT | R | 000000 | The actual flash current in flash mode. It can be read only during flash. 0 to 2000mA, 31.7mA/step. 000000 = 0mA; 000001= 31.7mA111111 = 2000mA. | | | ## **Table 10: Minimum Flash LED Current Register** | | Addr: 0x09 | | | | | | |-----|------------|--------|---------|--|--|--| | Bit | Bit Name | Access | Default | Description | | | | 7:6 | NA | R | NA | Reserved. | | | | 5:0 | IFL_MIN | R | 000000 | The minimum flash current caused by low battery voltage current reduction in flash mode. 0 to 2000mA, 31.7mA/step. 000000 = 0mA; 000001= 31.7mA 111111 = 2000mA. | | | # **Table 11: LED Torch Current Setting Register** | | Addr: 0x0A | | | | | | |-----|------------|--------|---------|---|--|--| | Bit | Bit Name | Access | Default | Description | | | | 7:6 | NA | R | NA | Reserved. | | | | 5:0 | I_TOR | RW | 001000 | LED torch current setting bits. 0 to 508mA, 31.7mA/step. 000000 = 0mA, 000001= 31.7mA010000 = 508mA. (Default 001000 = 254mA) | | | **Table 12: Fault Indication Register** | Addr: 0x0B | | | | | | |------------|----------|--------|---------|---|--| | Bit | Bit Name | Access | Default | Description | | | 7 | FT_VBATL | R | 0 | Low battery voltage fault bit. 0 = no fault. 1 = fault. | | | 6 | FT_OVP | R | 0 | Output over voltage fault bit. 0 = no fault. 1 = fault. | | | 5 | FT_VOSC | R | 0 | VOUT-GND short fault bit. 0 = no fault. 1 = fault. | | | 4 | FT_LEDSC | R | 0 | LED short fault bit. 0 = no fault | | | 3 | FT_OTP | R | 0 | Junction over-temperature fault bit. 0 = no fault | | | 2 | FT_TO | R | 0 | Flash time out fault bit. 0 = no fault. 1 = fault. | | | 1 | FT_TX | R | 0 | TX fault bit. 0 = no fault. 1 = fault. | | | 0 | NA | R | NA | NA | | # **Table 13: Fault Indication Register** | | Addr: 0x0C | | | | | | | |-----|------------|--------|---------|--|--|--|--| | Bit | Bit Name | Access | Default | Description | | | | | 7:2 | NA | R | NA | Reserved. | | | | | 1 | NA | R | NA | Reserved. | | | | | 0 | FT_LEDOP | R | 0 | LED open fault bit. 0 = no fault; 1 = fault. | | | | # **APPLICATION INFORMATION** #### **Selecting the Input Capacitor** The input capacitor reduces the surge current drawn from the input supply and the switching noise from the device. The input capacitor impedance at the switching frequency should be less than the input source impedance to prevent the high-frequency switching current from passing through to the input. Use ceramic capacitors with X5R or X7R dielectrics for their low ESR and small temperature coefficients. A higher value capacitor helps reduce the input voltage ripple and noise. For most applications, a 10µF ceramic capacitor will suffice. ## Selecting the Inductor The converter requires an inductor to supply a higher output voltage while being driven by the input voltage. A larger value inductor results in less ripple current, resulting in lower peak inductor current and reducing stress on the internal N-channel MOSFET. However, the larger value inductor has a larger physical size, a higher series resistance, and a lower saturation current. Choose an inductor that does not saturate under the worst-case load conditions. Select the minimum inductor value to ensure that the boost converter works in continuous conduction mode (CCM) with high efficiency and good EMI performance. Calculate the required inductance value using Equation (1) and Equation (2): $$L \ge \frac{\eta \times V_{OUT} \times D \times (1-D)^2}{2 \times f_{SW} \times I_{LOAD}}$$ (1) $$D = 1 - \frac{V_{IN}}{V_{OUT}} \tag{2}$$ Where V_{IN} and V_{OUT} are the input and output voltages, f_{SW} is the switching frequency; I_{LOAD} is the LED load current, and η is the efficiency. The switching current is used for the peak current mode control. In order to avoid reaching the current limit, the worst-case inductor peak current should be less than 80% of the current-limit (I_{LIM}). For most applications, 0.47uH~2uH inductor will suffice. # **Selecting the Output Capacitor** The output capacitor keeps the output voltage ripple small and ensures feedback loop stability. The output capacitor impedance must be low at the switching frequency. Ceramic capacitors with X7R dielectrics are recommended for their low ESR characteristics. Please note that ceramic capacitance is dependent on the voltage rating; a DC bias voltage and the value can lose as much as 50% of its capacitance at its rated voltage rating. Please leave a large enough voltage rating margin when selecting the component. In addition, too low a capacitance value will cause loop instability. For most applications, a 10µF ceramic capacitor will suffice. # TYPICAL APPLICATION CIRCUITS Figure 15: Typical Application Circuit # **PACKAGE INFORMATION** # WLCSP-9 (1.7mm x 1.7mm) #### **TOP VIEW** **BOTTOM VIEW** #### **SIDE VIEW** ## **NOTE:** - 1) ALL DIMENSIONS ARE IN MILLIMETERS. - 2) BALL COPLANARITY SHALL BE 0.05 MILLIMETER MAX. - 3) JEDEC REFERENCE IS MO-211. - 4) DRAWING IS NOT TO SCALE. #### **RECOMMENDED LAND PATTERN** **NOTICE:** The information in this document is subject to change without notice. Users should warrant and guarantee that third party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.