

QUAD N-CHANNEL MOSFET Qualified per MIL-PRF-19500/597

Qualified Levels: JAN, JANTX, and JANTXV

DESCRIPTION

This 2N7334 device is military qualified up to a JANTXV level for high-reliability applications. Microsemi also offers numerous other products to meet higher and lower power voltage regulation applications.

Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- JEDEC registered 2N7334 number.
- JAN, JANTX, and JANTXV qualifications are available per MIL-PRF-19500/597.
- RoHS compliant versions available (commercial grade only).

APPLICATIONS / BENEFITS

- High frequency operation.
- · Lightweight.
- ESD rated to class 1A.

MAXIMUM RATINGS @ T_A = +25 °C unless otherwise noted.

Parameters / Test Conditions	Symbol	Value	Unit	
Operating & Storage Temperature	T_{op}, T_{stg}	-55 to +150	°C	
Thermal Resistance, Junction to Ambient	1 die 4 die	R _{ÐJA}	90 50	°C/W
Gate – Source Voltage		V _{GS}	± 20	V
Continuous Drain Current @ T _C = +25 °C		I _{D1}	1.0	Α
Continuous Drain Current @ T _C = +100 °C	I _{D2}	0.6	Α	
Max. Power Dissipation @ T _C = +25 °C (free a	P_{T}	1.4	W	
Maximum Drain to Source On State Resistance @ T _J = @ T _J =	MAX R _{ds(on)}	0.70 1.4	Ω	
Collector Efficiency	Is	1.0	Α	
Single Pulse Avalanche Energy Capability	Eas	75	MJ	
Repetitive Avalanche Energy Capability	E _{AR}	.14	MJ	
Rated Avalanche Current (repetitive and nonre	I _{AR}	1.0	Α	
Off-State Current	I _{DM}	4.0	A (pk)	

Notes: 1. Derated linearly 11 mW/°C for $T_C > +25$ °C.

2. The following formula derives the maximum theoretical I_D limit. I_D is limited by package and internal wires and may also be limited by pin diameter:

$$I_D = \sqrt{\frac{T_J (max) - T_C}{R_{\theta JC} x R_{DS(on)} @ T_J (max)}}$$

3. $I_{DM} = 4 \times I_{D1}$ as calculated in note 2.

MO-036AB Package

MSC - Lawrence

6 Lake Street, Lawrence, MA 01841 Tel: 1-800-446-1158 or (978) 620-2600 Fax: (978) 689-0803

MSC - Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

Website:

www.microsemi.com

MECHANICAL and PACKAGING

- CASE: Ceramic, lid: alloy 42, Au over Ni plating.
- TERMINALS: Alloy 42, Au over Ni plating, solder dipped. RoHS compliant without solder dipping on commercial grade only.
- MARKING: Manufacturer's ID, part number, date code.
- WEIGHT: Approx. 1.3 grams.
- See <u>Package Dimensions</u> on last page.

PART NOMENCLATURE

	SYMBOLS & DEFINITIONS				
Symbol	Symbol Definition				
I _D	Drain current				
I _F	Forward current				
Tc	Case temperature				
V_{DD}	Drain supply voltage				
V_{DS}	Drain to source voltage				
V _{GS}	Gate to source voltage				

ELECTRICAL CHARACTERISTICS @ T_A = +25 °C, unless otherwise noted

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
OFF CHARACTERTICS				
Drain-Source Breakdown Voltage	\/	100		V
$V_{GS} = 0 \text{ V}, I_D = 1 \text{m A}$	$V_{(BR)DSS}$	100		V
Gate-Source Voltage (Threshold)				
$V_{DS} \ge V_{GS}$, $I_D = 0.25 \text{mA}$	$V_{GS(th)1}$	2.0	4.0	V
$V_{DS} \ge V_{GS}, I_D = 0.25 \text{ mA}, T_j = +125 \text{ °C}$	$V_{GS(th)2}$	1.0		V
$V_{DS} \ge V_{GS}, I_D = 0.25 \text{ mA}, T_j = -55 \text{ °C}$	$V_{GS(th)3}$		5.0	
Gate Current				
$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$	I _{GSS1}		±100	nA
$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}, T_j = +125 \text{ °C}$	I _{GSS2}		±200	
Drain Current				
$V_{GS} = 0 \text{ V}, V_{DS} = 80 \% \text{ of rated } V_{DS}$	I _{DSS1}		25	μΑ
$V_{GS} = 0 \text{ V}, V_{DS} = 80 \% \text{ of rated } V_{DS}, T_j = +125 \text{ °C}$	I _{DSS2}		0.25	mA
Static Drain-Source On-State Resistance				
$V_{GS} = 10 \text{ V}, I_D = 0.60 \text{ A}$	r _{DS(on)1}		0.70	Ω
$V_{GS} = 10 \text{ V}, I_D = 1.0 \text{ A}$	r _{DS(on)2}		0.80	Ω
$T_{j} = +125 ^{\circ}\text{C}$				
$V_{GS} = 10 \text{ V}, I_D = 0.60 \text{ A}$	r _{DS(on)3}		1.4	Ω
Diode Forward Voltage	V_{SD}		1.5	٧
$V_{GS} = 0 \text{ V}, I_D = 1.0 \text{ A}$	- 30			•

DYNAMIC CHARACTERISTICS

Parameters / Test Conditions		Symbol	Min.	Max.	Unit
Gate Charge:	Condition B				
On-State Gate Charge		$Q_{g(on)}$		15	
Gate to Source Charge		Q_{gs}		7.5	nC
Gate to Drain Charge		Q_{qd}		7.5	

SWITCHING CHARACTERISTICS

Parameters / Test Conditions			Min.	Max.	Unit
Switching time tests:					
Turn-on delay time	$I_D = 1.0 \text{ A}, V_{GS} = 10 \text{ V},$	t _{d(on)}		20	
Rinse time	Gate drive impedance = 7.5Ω ,	t _r		25	ns
Turn-off delay time	$V_{DD} = 50 \text{ V}$	t _{d(off)}		40	
Fall time		Ì,		40	
Diada Bayaraa Baaayary Tima	$di/dt = 100 \text{ A/}\mu\text{s}, V_{DD} \le 30 \text{ V},$			200	no
Diode Reverse Recovery Time	$I_D = 1.0 \text{ A}$	t _{rr}	i	200	ns

GRAPHS

FIGURE 1 - Thermal Response Curves

FIGURE 2 - Maximum Drain Current vs Case Temperature

GRAPHS (continued)

FIGURE 3 - Maximum Safe Operating Area

PACKAGE DIMENSIONS

	Dimensions					
Symbol	Inch		Millimeters		Notes	
	Min	Max	Min	Max		
ВН	.105	.175	2.67	4.45	11	
BL	.690	.770	17.53	19.56		
BW	.290	.325	7.37	8.26		
BW ₁	.280	.310	7.11	7.87	10	
LH	.025	.055	0.64	1.40	9, 11	
LT	.008	.012	0.203	0.305		
LW	.015	.021	0.381	0.533	9	
LW ₁	.038	.060	0.97	1.52		

	Dimensions					
Symbol	Inch		Millimeters		Notes	
	Min	Max	Min	Max		
LS	.300) TP	7.62 TP		5, 6	
LS1	.100) TP	2.54 TP		5, 6	
LL	.125	.175	3.18	4.45	11	
LL ₁	.000	.030	0.00	0.76		
α	0°	15°	0°	15°	7	
R	.010		0.25			
S	.030	.095	0.76	2.41		
N	1	4	14		8	

NOTES:

- 1. Dimensions are in inches.
- 2. Millimeters are given for general information only.
- 3. Refer to applicable symbol list.
- 4. Dimensioning and tolerancing in accordance with ASME Y14.5.
- 5. Leads within +/- .005 inch (0.13 mm) radius of True Position (TP) at gauge plane with maximum material condition and unit installed.
- 6. LS₁ and LS applies in zone LL₁ when unit installed.
- 7. α applies to spread leads prior to installation.
- 8. N is the number of terminal positions.
- 9. Outlines on which the seating plane is coincident with the base plane (LH = 0), terminals lead standoffs are not required, and LH1 may equal LW along any part of the lead above the seating/base plane.
- 10. BW₁ does not include particles of package materials.
- 11. This dimension shall be measured with the device seated in the seating plane gauge JEDEC Outline No. GS-3.