5V/3.3V 1:2 DIFFERENTIAL FANOUT BUFFER

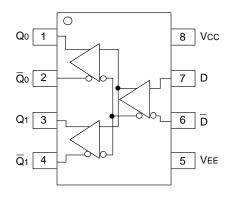
Precision Edge® SY10EL11V SY100EL11V

FEATURES

- 3.3V and 5V power supply options
- 265ps propagation delay
- 5ps skew between outputs
- High bandwidth output transitions
- Internal 75K Ω input pull-down resistors
- Replaces SY10/100EL11
- **■** Improved output waveform characteristics
- Available in 8-pin SOIC package

DESCRIPTION

The SY10/100EL11V are 1:2 differential fanout gates. These devices are functionally similar to the E111A/L devices, with higher performance capabilities. Having within-device skews and output transition times significantly improved over the E111A/L, the EL11V is ideally suited for those applications which require the ultimate in AC performance.


The differential inputs of the EL11V employ clamping circuitry to maintain stability under open input conditions. If the inputs are left open (pulled to VEE), the Q outputs will go LOW.

PIN NAMES

Pin	Function
D	Data Inputs
Q0, Q1	Data Outputs

Precision Edge is a registered trademark of Micrel, Inc.

PACKAGE/ORDERING INFORMATION

8-Pin SOIC (Z8-1)

Ordering Information⁽¹⁾

Part Number	Package Type	Operating Range	Package Marking	Lead Finish
SY10EL11VZC	Z8-1	Commercial	HEL11V	Sn-Pb
SY10EL11VZCTR ⁽²⁾	Z8-1	Commercial	HEL11V	Sn-Pb
SY100EL11VZC	Z8-1	Commercial	XEL11V	Sn-Pb
SY100EL11VZCTR ⁽²⁾	Z8-1	Commercial	XEL11V	Sn-Pb
SY10EL11VZI	Z8-1	Industrial	HEL11V	Sn-Pb
SY10EL11VZITR ⁽²⁾	Z8-1	Industrial	HEL11V	Sn-Pb
SY100EL11VZI	Z8-1	Industrial	XEL11V	Sn-Pb
SY100EL11VZITR ⁽²⁾	Z8-1	Industrial	XEL11V	Sn-Pb
SY10EL11VZG ⁽³⁾	Z8-1	Industrial	HEL11V with Pb-Free bar-line indicator	Pb-Free NiPdAu
SY10EL11VZGTR ^(2, 3)	Z8-1	Industrial	HEL11V with Pb-Free bar-line indicator	Pb-Free NiPdAu
SY100EL11VZG ⁽³⁾	Z8-1	Industrial	XEL11V with Pb-Free bar-line indicator	Pb-Free NiPdAu
SY100EL11VZGTR ^(2, 3)	Z8-1	Industrial	XEL11V with Pb-Free bar-line indicator	Pb-Free NiPdAu

Notes:

- 1. Contact factory for die availability. Dice are guaranteed at T_A = 25°C, DC Electricals only.
- 2. Tape and Reel.
- 3. Pb-Free package is recommended for new designs.

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Rating	Value	Unit	
V _{CC}	Power Supply Voltage (V _{EE} = 0)	+6.0 to 0	V	
V _{EE}	Power Supply Voltage (V _{CC} = 0)		-6.0 to 0	V
V _{IN}	Input Voltage (V_{CC} = 0V, V_{IN} not more negative the Input Voltage (V_{EE} = 0V, V_{IN} not more positive that	-6.0 to 0 +6.0 to 0	V V	
I _{OUT}	Output Current	-Continuous -Surge	50 100	mA
T _{LEAD}	Lead Temperature Range (soldering, 20sec.)		+260	°C
T _A	Operating Temperature Range		-40 to +85	°C
T _{store}	Storage Temperature Range	-65 to +150	°C	
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	-Still Air -500lfpm	160 109	°C/W °C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	39	°C/W	
ESD	Mil Std. 883 Human Body Model, All Pins	>1.5k	V	

Note 1. Permanent device damage may occur if absolute maximum ratings are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS(1)

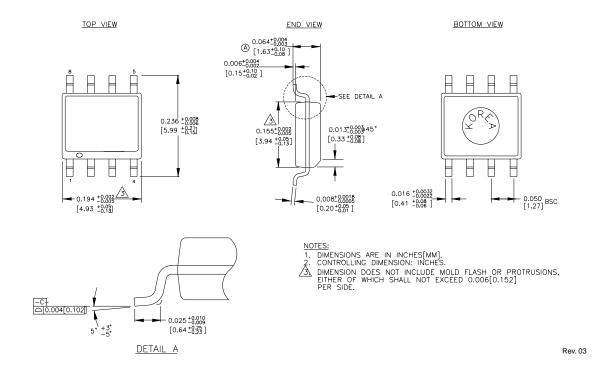
VEE = VEE (Min.) to VEE (Max.); VCC = GND

		TA = -40°C			TA = 0°C			TA = +25°C			TA = +85°C			
Symbol	Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
IEE	Power Supply Current													mA
	10EL	_	26	31	15	26	31	15	26	31	15	26	31	
	100EL	_	26	31	15	26	31	15	26	31	15	30	36	
lін	Input HIGH Current	_	_	150		_	150	_	_	150	_	_	150	μΑ

Note 1. Parametric values specified at:

10/100EL11V Series:

-3.0V to -5.5V.


AC ELECTRICAL CHARACTERISTICS(1)

VEE = VEE (Min.) to VEE (Max.); VCC = GND

		TA = -40°C			TA = 0°C			TA = +25°C			TA = +85°C			
Symbol	Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
tPLH tPHL	Propagation Delay to Output D	135	260	385	185	260	335	190	265	340	215	290	365	ps
tskew	Within-Device Skew ⁽²⁾ Duty Cycle Skew ⁽³⁾		5 5	_		5 5	20 20	_	5 5	20 20	_	5 5	20 20	ps
VPP	Minimum Input Swing(4)	150	_	_	150	_	_	150	_	_	150	_	_	mV
VCMR	Common Mode Range ⁽⁵⁾	-1.3	_	-0.4	-1.4	_	-0.4	-1.4	_	-0.4	-1.4	_	-0.4	V
tr tf	Output Rise/Fall Times Q (20% to 80%)	100	225	350	100	225	350	100	225	350	100	225	350	ps

- Note 1. Parametric values specified at:
- 10/100EL11V Series:
- -3.0V to -5.5V.
- Note 2. Within-device skew defined as identical transitions on similar paths through a device.
- Note 3. Duty cycle skew is the difference between a tPLH and tPHL propagation delay through a device.
- Note 4. Minimum input swing for which AC parameters are guaranteed. The device has a DC gain of ≈40.
- Note 5. The CMR range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between VPP min. and 1V. The lower end of the CMR range varies 1:1 with VEE. The numbers in the spec table assume a nominal VEE = -3.3V. Note for PECL operation, the VCMR (min) will be fixed at 3.3V |VCMR (min)|.

8-PIN SOIC .150" WIDE (Z8-1)

Package Notes:

Note 1. Package meets Level 1 moisture sensitivity.

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 WEB http://www.micrel.com

The information furnished by Micrel in this datasheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use.

Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2006 Micrel, Incorporated.