

5V/3.3V 1:9 DIFFERENTIAL CLOCK DRIVER (w/o ENABLE)

Precision Edge[®] SY10E111A/L SY100E111A/L

FEATURES

- 5V and 3.3V power supply options
- 200ps part-to-part skew
- 50ps output-to-output skew
- Differential design
- VBB output
- Voltage and temperature compensated outputs
- 75KΩ input pulldown resistors
- Fully compatible with Motorola MC100LVE111
- Available in 28-pin PLCC package

BLOCK DIAGRAM

PIN NAMES

Pin	Function
IN, ĪN	Differential Input Pair
$Q_0, \overline{Q}_0 - Q_8, \overline{Q}_8$	Differential Outputs
V _{BB}	VBB Output
V _{CCO}	Vcc to Output

DESCRIPTION

The SY10/100E111A/L are low skew 1-to-9 differential driver designed for clock distribution in mind. The SY10/100E111A/L's function and performance are similar to the popular SY10/100E111, with the improvement of lower jitter and the added feature of low voltage operation. It accepts one signal input, which can be either differential or single-ended if the V_{BB} output is used. The signal is fanned out to 9 identical differential outputs.

The E111A/L are specifically designed, modeled and produced with low skew as the key goal. Optimal design and layout serve to minimize gate to gate skew within a device, and empirical modeling is used to determine process control limits that ensure consistent t_{pd} distributions from lot to lot. The net result is a dependable, guaranteed low skew device.

To ensure that the tight skew specification is met it is necessary that both sides of the differential output are terminated into 50Ω , even if only one side is being used. In most applications, all nine differential pairs will be used and therefore terminated. In the case where fewer that nine pairs are used, it is necessary to terminate at least the output pairs on the same package side as the pair(s) being used on that side, in order to maintain minimum skew. Failure to do this will result in small degradations of propagation delay (on the order of 10-20ps) of the output(s) being used which, while not being catastrophic to most designs, will mean a loss of skew margin.

The E111A/L, as with most other ECL devices, can be operated from a positive V_{cc} supply in PECL mode. This allows the E111A/L to be used for high performance clock distribution in +5V/+3.3V systems. Designers can take advantage of the E111A/L's performance to distribute low skew clocks across the backplane or the board. In a PECL environment, series or Thevenin line terminations are typically used as they require no additional power supplies. For systems incorporating GTL, parallel termination offers the lowest power by taking advantage of the 1.2V supply as terminating voltage.

Precision Edge is a registered trademark of Micrel, Inc.

PACKAGE/ORDERING INFORMATION

28-Pin PLCC (J28-1)

Ordering Information⁽¹⁾

	Package	Operating	Package	Lead		
Part Number	Туре	Range	Marking	Finish		
SY10E111LJI	J28-1	Industrial	SY10E111LJI	Sn-Pb		
SY10E111LJITR ⁽²⁾	J28-1	Industrial	SY10E111LJI	Sn-Pb		
SY100E111LJI	J28-1	Industrial	SY100E111LJI	Sn-Pb		
SY100E111LJITR ⁽²⁾	J28-1	Industrial	SY100E111LJI	Sn-Pb		
SY10E111LJC	J28-1	Commercial	SY10E111LJC	Sn-Pb		
SY10E111LJCTR ⁽²⁾	J28-1	Commercial	SY10E111LJC	Sn-Pb		
SY100E111LJC	J28-1	Commercial	SY100E111LJC	Sn-Pb		
SY100E111LJCTR ⁽²⁾	J28-1	Commercial	SY100E111LJC	Sn-Pb		
SY10E111AJI	J28-1	Industrial	SY10E111AJI	Sn-Pb		
SY10E111AJITR ⁽²⁾	J28-1	Industrial	SY10E111AJI	Sn-Pb		
SY100E111AJI	J28-1	Industrial	dustrial SY100E111AJI			
SY100E111AJITR ⁽²⁾	J28-1	Industrial	Sn-Pb			
SY10E111AJC	J28-1	Commercial	SY10E111AJC	Sn-Pb		
SY10E111AJCTR ⁽²⁾	J28-1	Commercial	SY10E111AJC	Sn-Pb		
SY100E111AJC	J28-1	Commercial	SY100E111AJC	Sn-Pb		
SY100E111AJCTR ⁽²⁾	J28-1	Commercial	SY100E111AJC	Sn-Pb		
SY10E111LJY ⁽³⁾	J28-1	Industrial	SY10E111LJY with Pb-Free bar-line indicator	Matte-Sn		
SY10E111LJYTR ^(2, 3)	J28-1	Industrial	SY10E111LJY with Pb-Free bar-line indicator	Matte-Sn		
SY100E111LJY ⁽³⁾	J28-1	Industrial	SY100E111LJY with Pb-Free bar-line indicator	Matte-Sn		
SY100E111LJYTR ^(2, 3)	J28-1	Industrial	SY100E111LJY with Pb-Free bar-line indicator	Matte-Sn		
SY10E111AJY ⁽³⁾	J28-1	Industiral	SY10E111AJY with Pb-Free bar-line indicator	Matte-Sn		
SY10E111AJYTR ^(2, 3)	J28-1	Industrial	SY10E111AJY with Pb-Free bar-line indicator	Matte-Sn		
SY100E111AJY ⁽³⁾	J28-1	Industrial	SY100E111AJY with Pb-Free bar-line indicator	Matte-Sn		
SY100E111AJYTR ^(2, 3)	J28-1	Industrial	SY100E111AJY with Pb-Free bar-line indicator	Matte-Sn		

Notes:

1. Contact factory for die availability. Dice are guaranteed at $T_A = 25^{\circ}C$, DC Electricals only.

2. Tape and Reel.

3. Pb-Free package is recommended for new designs.

PRODUCT/PROCESS INFORMATION

Process:	Bipolar
ESD Rating:	Per Mil Std. 883 Human Body Model, >1.5kV (all pins).

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Rating	Value	Unit
V _{CC}	Power Supply Voltage ($V_{EE} = 0$)	+6.0 to 0	V
V_{EE}	Power Supply Voltage ($V_{CC} = 0$)	-6.0 to 0	V
V _{IN}	Input Voltage ($V_{CC} = 0V$, V_{IN} not more negative than V_{EE}) Input Voltage ($V_{EE} = 0V$, V_{IN} not more positive than V_{CC})	-6.0 to 0 +6.0 to 0	V V
I _{OUT}	Output Current –Continu –Surge	uous 50 100	mA
T _{LEAD}	Lead Storage Temperature Range (soldering, 20sec.)	+260	°C
Τ _Α	Operating Temperature Range	-40 to +85	°C
T _{store}	Storage Temperature Range	-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient) –Still Air	79	°C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	24	°C/W
ESD	Mil Std. 883 Human Body Model, All Pins	>1.5k	V

Note 1. Permanent device damage may occur if absolute maximum ratings are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ECL DC ELECTRICAL CHARACTERISTICS⁽¹⁾

 $V_{EE} = V_{EE}$ (Min.) to V_{EE} (Max.); $V_{CC} = GND$

		$T_A = -40^{\circ}C$			Г	= 0°0	0	T,	= +25	°C	T_			
Symbol	Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
V _{oh}	Output HIGH Voltage 10EL 100EL	-1080 -1085		890 880	-1020 -1025	_	840 880	-980 -1025		810 880	-910 -1025		-720 -880	mV
V _{ol}	Output LOW Voltage 10EL 100EL	-1950 -1830		-1650 -1550	-1950 -1810	_	-1630 -1620	-1950 -1810	_	-1630 -1620	-1950 -1810		-1595 -1620	
V _{IH}	Input HIGH Voltage 10EL 100EL	-1230 -1165		890 880	-1170 -1165	_	840 880	-1130 -1165	_	810 880	-1060 -1165	_	-720 -880	mV
V _{IL}	Input LOW Voltage 10EL 100EL	-1950 -1810		-1500 -1475	-1950 -1810	_	-1480 -1475	-1950 -1810		-1480 -1475	-1950 -1810		-1445 -1475	
V _{BB}	Output Reference Voltage 10EL 100EL	-1.43 -1.38		-1.30 -1.26	-1.38 -1.38		-1.27 -1.26	-1.35 -1.38		-1.25 -1.26	-1.31 -1.38		-1.19 -1.26	V
I _{IH}	Input HIGH Current	_		150		_	150	_	—	150	_	—	150	μΑ
I _L	Input LOW Current 10EL 100EL	0.5 0.5			0.5 0.5	_	_	0.5 0.5			0.3 0.5			μA
I _{EE}	Power Supply Current 10EL 100EL	35 35		65 65	35 35	_	65 65	35 35		65 65	35 35		65 75	mA

Note 1. Parametric values specified at:

5 volt Power Supply Range

100E111A Series:

-4.2V to -5.5V. -4.75V to -5.5V.

3 volt Power Supply Range

10E111A Series -10/100E111L Series: -

-4.75V to -5.5V. -3.0V to -3.8V.

3.3V PECL DC ELECTRICAL CHARACTERISTICS⁽¹⁾

$V_{CC} = +3.0V$ to +3.8V, $V_{FF} = GND$

		ТА	A = −40	°C	Т	TA = 0°C			A = +25	°C	TA			
Symbol	Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
V _{oH}	Output HIGH Voltage Note 2 10EL 100EL	2220 2215		2110 2120	2280 2275		2460 2420	2320 2275		2490 2420	2390 2275		2580 2420	mV
V _{ol}	Output LOW Voltage Note 2 10EL 100EL	1350 1470	_	1650 1750	1350 1490		1670 1680	1350 1490		1670 1680	1350 1490		1705 1680	mV
V _{IH}	Input HIGH Voltage Note 2 10EL 100EL	2070 2135	_	2410 2420	2130 2135	_	2460 2420	2170 2135	_	2490 2420	2240 2135	_	2580 2420	mV
V _{IL}	Input LOW Voltage Note 2 10EL 100EL	1350 1490	_	1800 1825	1350 1490	_	1820 1825	1350 1490	_	1820 1825	1350 1490	_	1855 1825	mV
V _{BB}	Output Reference Voltage, Note 2 10EL 100EL	1.87 1.92	_	2.00 2.04	1.92 1.92		2.03 2.04	1.95 1.92	_	2.05 2.04	1.99 1.92	_	2.11 2.04	V
I _{III}	Input HIGH Current	_	-	150			150	—	_	150	—	_	150	μA
I _{IL}	Input LOW Current 10EL 100EL	0.5 0.5	_		0.5 0.5	_		0.5 0.5	_	_	0.3 0.5	_	_	μA
I _{EE}	Power Supply Current 10EL 100EL			66 66			66 66			66 66			66 78	mA

Note 1. Parametric values specified at:

3 volt Power Supply Range 10/100E111L Series: +3.0V to +3.8V.

Min.

3.62

_

_

66

TA = +85°C

Тур.

Unit

mV

mV

mν

mν

V

μA

μΑ

mΑ

Max.

4280

4120

3405

3380

4280

4120

3555

3525

3.81

3.74

150

66

78

Note 2. These values are for V_{CC} = 3.3V. Level specifications will vary 1:1 with V_{CC} .

5V PECL DC ELECTRICAL CHARACTERISTICS⁽¹⁾

 $V_{CC} = V_{CC}$ (Min.) to V_{CC} (Max.); $V_{EE} = GND$ TA = -40°C $TA = 0^{\circ}C$ TA = +25°C Min. Symbol Parameter Min. Тур. Max. Тур. Max. Min. Max. Тур. **Output HIGH Voltage** V_{OH} 3920 3980 4020 Note 2 10EL 4110 4160 100EL 3915 4120 3975 4120 3975 V_{OL} Output LOW Voltage 3050 3350 3050 3370 3050 Note 2 10EL _ 3170 3450 ____ 3380 3190 100EL 3190 V_{IH} Input HIGH Voltage 3830 Note 2 10EL 3770 4110 4160 3870 100EL 3835 3835 ____ 4120 3835 ___ 4120 V Input LOW Voltage 10EL 3500 3050 3050 Note 2 3050 3520 _ _ 100EL 3190 3525 3190 3525 3190 V_{BB} **Output Reference** Voltage, Note 2 10EL

4090 4190 4120 3975 3370 3050 3190 3380 4190 3940 4120 3835 3520 3050 3525 3190 3.70 3.62 3.73 3.65 3.57 3.75 3.69 3.74

_

Input HIGH Current 150 _ 150 150 Input LOW Current 10EL 0.5 0.5 0.3 0.5 0.5 100EL 0.5 0.5 0.5 Power Supply Current 10EL 66 66 66 ____

3.62

3.74

66

Note 1. Parametric values specified at:

I_{IH}

I,

 I_{EE}

5 volt Power Supply Range 100E111A Series: +4.2V to +5.5V.

3.62

_

3.74

66

10E111A Series +4.75V to +5.5V.

_

_

Note 2. These values are for $V_{CC} = 5V$. Level specifications will vary 1:1 with V_{CC} .

100EL

100EL

3.62

_

_

_

AC ELECTRICAL CHARACTERISTICS⁽¹⁾

		TA = -40°C		TA = 0°C			TA = +25°C			TA = +85°C				
Symbol	Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
t _{PD}	Propagation Delay to Output IN (differential), Note 2 IN (single-ended), Note 3	380 280		680 780	430 330		630 730	430 330		630 730	430 330		630 730	ps
t _{skew}	Within-Device Skew, Note 4 Part-to-Part Skew (Diff.)	_	_	75 250	_	_	50 200	_	_	50 200		_	50 200	ps
V _{PP}	Minimum Input Swing, Note 5	250	_	_	250	_	_	250	—	_	250	_	_	mV
V _{CMR}	Common Mode Range, Note 6	-1.5	_	-0.4	-1.5	_	-0.4	-1.5	—	-0.4	-1.5	_	-0.4	V
t _r t _f	Rise/Fall Times 20% to 80%	200	—	650	200	—	600	200		600	200	—	600	ps
Note 1. Pa	arametric values specified at: 5	volt Pov	ver Sup	ply Rand	ue 10	DE111A	Series:		-4.	2V to -5	.5V.			

10E111A Series

10/100E111L Series:

-4.75V to -5.5V. -3.0V to -3.8V.

Note 2. The differential propagation delay is defined as the delay from the crossing points of the differential input signals to the crossing point of the differential output signals.

The single-ended propagation delay is defined as the delay from the 50% point of the input signal to the 50% point of the output signal. Note 3.

Note 4. The within-device skew is defined as the worst case difference between any two similar delay paths within a single device.

3 volt Power Supply Range

Note 5. V_{PP} (min) is defined as the minimum input differential voltage which will cause no increase in the propagation delay. The V_{PP} (min) is AC limited for the E111A/L as a differential input as low as 50mV will still produce full ECL levels at the output.

 V_{CMR} is defined as the range within the V_{IH} level may vary, with the device still meeting the propagation delay specification. The V_{IL} level must be such that the peak-to-peak voltage is less than 1.0V and greater than or equal to V_{PP} (min). Note 6.

For PECL operation: V_{CMR} (max) = V_{CC} - |V_{CMR} (max)| and V_{CMR} (min) = V_{CC} - |V_{CMR} (min)|

28-PIN PLCC (J28-1)

Package Notes:

Note 1. Package meets Level 1 moisture sensitivity.

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

теь + 1 (408) 944-0800 FAX + 1 (408) 474-1000 web http://www.micrel.com

The information furnished by Micrel in this datasheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2006 Micrel, Incorporated.