1 Features and Benefits | ш | Wide operating voltage range: from 3.3V to 18V | |---|---| | | Less than 10 μ A average supply current in μ -Power | | | Mode | | | Flexible magnetic thresholds and temperature | | | coefficient | | | Integrated self-diagnostic functions activating | | | dedicated Safe Mode | | | Reverse supply voltage protection | | | Under-Voltage Reset protection | | | Thermal protection | | | Optional IMC integration for lateral sensing | | | Customer end-of-line programming | | | Wide programmable magnetic Latch/Switch range | | | Developed according to ISO26262-10, 9 as safety | | | HW element out of context with ASIL-B level | # **2** Application Examples | Automotive, Consumer and Industrial | |-------------------------------------| | Brake light wake-up switch | | Electronic Steering Column Lock | | Door latch system | | Seat positioning | | Sunroof/Tailgate opener | | Transmission applications | | Electrical power steering | | | | | # **3 Ordering Information** | Product Code | Temperature Code | Package Code | Option Code | Packing Form Code | |--------------|------------------|--------------|-------------|-------------------| | MLX92292 | L | SE | AAA-000 | RE | | MLX92292 | L | UA | AAA-000 | BU | | MLX92292 | L | SE | AAA-200 | RE | | MLX92292 | L | SE | AAA-001 | RE | | MLX92291 | L | SE | AAA-200 | RE | | MLX92291 | L | SE | AAA-201 | RE | | MLX92291 | L | SE | AAA-202 | RE | | MLX92291 | L | SE | AAA-005 | RE | | MLX92291 | L | SE | AAA-009 | RE | | MLX92291 | L | SE | AAA-006 | RE | | MLX92291 | L | SE | AAA-010 | RE | | MLX92291 | L | SE | AAA-008 | RE | | MLX92291 | L | SE | AAA-011 | RE | | MLX92291 | L | SE | AAA-203 | RE | #### Legend: Option Code: Temperature Code: L (-40°C to 150°C) Package Code: SE = TSOT-23L UA = UA (TO92-3L) 000 => 3 wire hall effect Switch/Latch 2xx => IMC version Packing Form: BU=Bulk | RE = Reel | CA = Ammopack | CR = Carton on Reel Ordering example: MLX92292LSE-AAA-000-RE # 4 Functional Diagram ### **5** General Description Melexis has made a major advance in magnetic sensing technology that will have widespread implications for modern automobile design the MLX92292 - effectively represents a whole new way of sensing. This device delivers switch functions, but unlike existing products on the market it can determine the presence of magnetic fields that are lateral, not just orthogonal, to it. The uniqueness of this offering is taken further by the fact that the MLX92292 switch is supporting an ASIL B safety integrity level (in accordance with ISO 26262), with an array of built-in diagnostic mechanisms available. Flexibility is a key attribute of the MLX92292. OEM customers can chose straightforward pre-programmed units, or alternatively they can benefit from the end-of-line (EoL) programming capacity. Through this each device may be configured (via its output pin) during the OEM production process, so system optimization is fully realized. The programming facility also enables setting of both magnetic operating points to small increments across a range spanning -90mT to +90mT (-40mT to +40mT for lateral sensing versions). The MLX92292 can be specified with standard orthogonal sensitivity or the lateral sensitivity option. The upshot of lateral sensitivity being that there is potential to replace multiple devices with a single surface mount unit, thereby saving valuable board space and lowering bill-of-materials costs. This stems directly from Melexis' proprietary Integrated Magnetic Concentrator (IMC™) technology, which enables substantial heightening of signal-to-noise ratios in magnetic field measurement. In addition, the capacity of this technology to sense laterally allows lower profile system implementations, as the magnet can move alongside the device rather than having to be above it. Safeguarding the MLX92292 are reverse supply voltage, thermal, electro-static discharge (ESD) and overvoltage protections, plus Under-Voltage Reset features. With the capacity to deal with a 40V load dump, it can be connected directly to the vehicle battery. In order to achieve ASIL B compliance, numerous diagnostic/monitoring functions have been incorporated, including Hall sensor and analog frontend diagnostics. The device comprises a full set of programmable reporting features, giving it compatibility with any existing electronic control unit (ECU) interface. Only the normal application pins are required for this - without need of additional diagnostic pins and thus simplifying the design concept considerably. 3-wire μ Power programmable ASIL B capable Hall Effect Latch/Switch Datasheet # **Table of Contents** | 1 Features and Benefits | 1 | |---|----| | 2 Application Examples | 1 | | 3 Ordering Information | 1 | | 4 Functional Diagram | 2 | | 5 General Description | 3 | | 6 Absolute Maximum Ratings | 6 | | 7 General Electrical Specifications | 7 | | 8 Version specific parameters | 9 | | 8.1 MLX92292LSE-AAA-000-RE / MLX92292LUA-AAA-000-BU | 9 | | 8.2 MLX92292LSE-AAA-200-RE | 10 | | 8.3 MLX92292LSE-AAA-001-RE | 11 | | 8.4 MLX92291LSE-AAA-200-RE | 11 | | 8.5 MLX92291LSE-AAA-201-RE | 11 | | 8.6 MLX92291LSE-AAA-202-RE | 12 | | 8.7 MLX92291LSE-AAA-005-RE | 12 | | 8.8 MLX92291LSE-AAA-009-RE | 12 | | 8.9 MLX92291LSE-AAA-006-RE | 13 | | 8.10 MLX92291LSE-AAA-010-RE | 13 | | 8.11 MLX92291LSE-AAA-008-RE | 13 | | 8.12 MLX92291LSE-AAA-011-RE | 14 | | 8.13 MLX92291LSE-AAA-203-RE | 14 | | 9 Magnetic Behaviour | 16 | | 9.1 Latch Sensor | 16 | | 9.2 Unipolar Switch Sensor | 16 | | 10 Functional Safety Capability | 18 | | 10.1 Sensor Development | 18 | | 10.2 Technical Safety Requirements10.2.1 TS_RQT_Mission10.2.2 TS_RQT_Safe_Message | 18 | | 11 Application Information | 20 | | 11.1 Typical Automotive Application Circuit | 20 | | 11.2 Automotive and Harsh Noisy Environments Application Circuit | 20 | # 3-wire μ Power programmable ASIL B capable Hall Effect Latch/Switch Datasheet | 12 Package Information | .21 | |--|------| | 12.1 UA (TO92-3L) Package Information | . 21 | | 12.2 SE (TSOT-3L) Package Information | . 22 | | 13 Standard information regarding manufacturability of Melexis products with different soldering processes | .23 | | 14 ESD Precautions | .23 | | 15 Contact | .24 | | 16 Disclaimer | .24 | 3-wire μ Power programmable ASIL B capable Hall Effect Latch/Switch Datasheet # **6 Absolute Maximum Ratings** | Parameter | Symbol | Value | Units | |---|--------------------|-------|-------| | Supply voltage(1, 2) | V_{DD} | +28V | V | | Supply voltage (Load Dump)(1,4) | V _{DD} | + 45V | V | | Supply current ^(1, 2, 3) | I _{DD} | +20 | mA | | Supply current(1, 3, 4) | I _{DD} | +50 | mA | | Reverse supply voltage ^(1, 2) | V _{DDREV} | -24 | V | | Reverse supply voltage ^(1, 4) | V _{DDREV} | -30 | V | | Reverse supply current ^(1, 2, 5) | IDDREV | -20 | mA | | Reverse supply current ^(1, 4, 5) | IDDREV | -40 | mA | | Output voltage(1, 2) | V _{OUT} | +28 | V | | Output current(1, 2, 5) | Гоит | +20 | mA | | Reverse output voltage ⁽¹⁾ | Voutrev | -0.5 | V | | Reverse output current ^(1, 2) | loutrev | -50 | mA | | Maximum junction temperature ⁽⁶⁾ | TJ | +165 | °C | | ESD sensitivity – HBM ⁽⁷⁾ | - | 8 | kV | | ESD sensitivity – CDM ⁽⁸⁾ | - | 1000 | V | Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. ¹ The maximum junction temperature should not be exceeded ² For maximum 1 hour ³ Including current through protection device ⁴ For maximum 500ms ⁵ Through protection device ⁶ For 1000 hours. ⁷ Human Body Model according AEC-Q100-002 standard ⁸ Charged Device Model according AEC-Q100-011 standard 3-wire μ Power programmable ASIL B capable Hall Effect Latch/Switch Datasheet # **7** General Electrical Specifications DC Operating Parameters V_{DD} = 3.3V to 18V, T_A = -40°C to 150°C (unless otherwise specified) | Parameter | Symbol | Test Conditions | Min | Typ ⁽¹⁾ | Max | Units | |--|------------------------|---|---------|--------------------|--------|-------| | Under-Voltage Reset threshold | Vuvr | V _{DD} monitoring during Active phase | 1.8 | 2.5 | 3 | V | | UVR reaction time ⁽²⁾ | tuvr | V_{DD} monitoring during Active phase, $V_{DD} = V_{UVR} - 0.3V$ | _ | 1 | _ | μs | | Minimum supply voltage for defined output state ⁽²⁾ | V _{DD1} | $R_{PU} = 2.2k\Omega$, $V_{PU} = 5V$ | _ | 1 | 1.2 | V | | Output leakage ⁽⁸⁾ | loff | V _{OUT} =18V, T _A = -4085°C | _ | 0.1 | 1 | μΑ | | Output leakage | loff | V _{OUT} =18V | _ | _ | 5 | μΑ | | Output saturation voltage | VoL | Fast Mode, I _{OL} =20mA | 0.1 | 0.25 | 0.7 | V | | Output saturation voltage | V _{OL} | μ-Power Mode, I _{OL} =10mA | _ | 0.15 | 0.5 | V | | Output Rise Time ^(2,5) (R _{PU} dependent) | t _R | R_{PU} =2.2k Ω , V_{DD} =12V, V_{PU} =5V C_{LOAD} =50pF to GND | 0.3 | 0.6 | 1 | μs | | Output Fall Time ^(2,5) (On-chip controlled) | tF | R_{PU} =2.2k Ω , V_{DD} =12V, V_{PU} =5V C_{LOAD} =50pF to GND | 0.3 | 0.6 | 1 | μs | | Power-On time(3, 4) | ton | V_{DD} =5V, $dV_{DD}/dt > 2V/us$ | _ | 0.5 | 1 | ms | | Power-On state | - | Output state during ton | | High | | _ | | Output update period | Tupd | Fast Mode | _ | 40 | 45 | μs | | Programmable operating (output update) period | Тор | μ-Power Mode, typical range | 0.16(1) | _ | 260(1) | ms | | Operating period 1 (1st ref. value) | T _{OP1} | μ-Power Mode | 196 | 222 | 246 | ms | | Operating period 2 (2 nd ref. value) | T _{OP2} | μ-Power Mode | 40 | 45 | 50 | ms | | Programmable diagnostic period in Fail Safe state | T _{DP} | Fast Mode, typical range | 0.13(1) | _ | 260(1) | ms | | Programmable "Output Ticking" repetition period | T _{TICK} | Equal to (multiple of) T _{OP} , typical range | 0.6(1) | _ | 260(1) | ms | | Programmable "Output Ticking" duration | tTICK | Typical range | 4 | _ | 128 | μs | | Active phase duration, diagnostic On | tACT_Don | μ-Power Mode, defined at I _{DD} > 0.7mA | _ | 40 | _ | μs | | Active phase duration, diagnostic Off | tACT_Doff | μ -Power Mode, defined at I _{DD} > 0.7mA | _ | 24 | _ | μs | | Tolerance of operating period ratio t_{ACT}/T_{OP} | RTOL | μ-Power Mode | -5 | 0 | 5 | % | | Active phase supply current, diagnostic On (average value) | I _{DDACT_Don} | μ-Power Mode | 1.8 | 2.4 | 2.9 | mA | | Active phase supply current, diagnostic Off (average value) | IDDACT_Doff | μ-Power Mode | 2.2 | 3 | 3.5 | mA | | Standby phase supply current(8) | IDDSTBY | $V_{DD} \le 16V, T_A = -4085$ °C | _ | 6 | 9 | μΑ | | Standby phase supply current | IDDSTBY | $V_{DD} \le 16V$ | _ | 6 | 27 | μΑ | | Average supply current(8,9) | I _{DDAVG1} | $V_{DD} \le 16V$, $T_A = -4085$ °C, $T_{OP} = T_{OP1}$ | _ | 6.4 | 9.5 | μΑ | | Average supply current ^(8,9) | I _{DDAVG2} | $V_{DD} \le 16V$, $T_A = -4085$ °C, $T_{OP} = T_{OP2}$ | _ | 8.1 | 11.7 | μA | | Step response time ⁽²⁾ | tresp | Fast Mode, B_{OP} = 1mT, B_{RP} = -1mT, square wave magnetic field with $B > \pm 4$ mT, t_{RISE} = t_{FALL} $\leq 5\mu s$ | 15 | 40 | 65 | μs | | Signal bandwidth ^(2,6) | BW | Fast Mode, B _{OP} = 1mT, B _{RP} = -1mT, sine wave magnetic field with amplitude 5mT | 6 | 8 | _ | kHz | | Peak supply current(2) | IDDPEAK | For peak duration ≥ 5µs | _ | 2.9 | 3.6 | mA | | Fast Mode supply current | IDDFAST | | 2.2 | 2.9 | 3.5 | mA | | Fast Mode fail supply current | I _{DDFAIL} | | 0.1 | 0.3 | 0.6 | mA | # 3-wire µPower programmable ASIL B capable Hall Effect Latch/Switch Datasheet | Reverse supply current | I _{DDREV} | V _{DD} = -16V | -1 | _ | _ | mA | |-------------------------------|--------------------|--|----|--------|---|------| | Thermal Protection Activation | T _{PROT} | | _ | 185(7) | _ | °C | | Thermal Protection Release | T _{REL} | | _ | 175(7) | _ | °C | | UA package thermal resistance | R _{THJA} | Single layer PCB, JEDEC standard test boards, still air (LFPM=0) | _ | 200 | _ | °C/W | | SE package thermal resistance | R _{THJA} | Single layer PCB, JEDEC standard test boards, still air (LFPM=0) | _ | 300 | _ | °C/W | ¹ Unless otherwise specified the typical values are defined at $T_A = +25$ °C and $V_{DD} = 12V$ 9 Average current consumption for μ -Power Mode with diagnostic On $$I_{\text{DDAVG}} = \frac{I_{\text{DDACT}} * t_{\text{ACT}} * (1 + R_{\text{TOL}} / 100) + I_{\text{DDSTBY}} * (T_{\text{OP}} - t_{\text{ACT}} * (1 + R_{\text{TOL}} / 100))}{T_{\text{OP}}} \,,$$ Where t_{act} and T_{OP} are always typical values. The maximum I_{DDACT} , I_{DDSTBY} and R_{TOL} spec values should be used for the maximum I_{DDAVG} calculation. Simplified supply current waveform in μ -Power mode ² Guaranteed by design and verified by characterization, not production tested ³ The Power-On Time represents the time from reaching $V_{\rm DD}$ = 3.3V to the first refresh of the output state. ⁴ Power-On Slew Rate is not critical for the proper device start-up. $⁵ R_{PU}$ and V_{PU} are respectively the external pull-up resistor and pull-up power supply ⁶ OUT switching should track magnetic field frequency without missing pulses $⁷ T_{PROT}$ and T_{REL} are the corresponding junction temperature values ⁸ Guaranteed by correlation with production test at T_A =150°C and verified by characterization 3-wire µPower programmable ASIL B capable Hall Effect Latch/Switch Datasheet # 8 Version specific parameters ### 8.1 MLX92292LSE-AAA-000-RE / MLX92292LUA-AAA-000-BU DC Operating Parameters V_{DD} = 3.3V to 18V, T_A = -40°C to 150°C (unless otherwise specified) | Parameter | Symbol | Test Conditions | Min | Typ ⁽¹⁾ | Max | | |---|-----------------|---|-------|--------------------|-----|--------| | Operating Point programming range (1) | Bop | V _{DD} =12V, T _A =25°C | -90 | _ | 90 | mT | | Release Point programming range (1) | B _{RP} | V _{DD} =12V, T _A =25°C | -90 | _ | 90 | mT | | Operating Point magnitude programming ^(2, 3) | B _{OP} | | _ | 12 | _ | bit | | Release Point magnitude programming ^(2, 3) | B _{RP} | | _ | 12 | _ | bit | | Operating Point polarity selection | Вор | | _ | 1 | _ | bit | | Release Point polarity selection | B _{RP} | | _ | 1 | _ | bit | | Direct or inverted output selection | _ | | _ | 1 | _ | bit | | Factory pre-programmed Operating Point, Latch | Вор | V _{DD} =12V, T _A =25°C,
programming target 25mT | 22 | 25 | 28 | mT | | Factory pre-programmed Release Point,
Latch | B _{RP} | V _{DD} =12V, T _A =25°C,
programming target -25mT | -28 | -25 | -22 | mT | | Temperature Coefficient programming range (4,5,6) | TC | V_{DD} =12V, Latch with B_{OP} =25mT, B_{RP} = -25mT | -2400 | | 0 | ppm/°C | | Temperature Coefficient selection | TC | | _ | 5 | _ | bit | | IMC | Safe
message | Operating period, ms | Diagnostic period in Fail Safe state, ms | "Output Ticking"
duration, μs | "Output Ticking" repetition period, ms | |-----|-----------------|----------------------|--|----------------------------------|--| | No | TickMsg | 45 | - | 128 | 45 | $$TC = \frac{B_{XPTA2} - B_{XPTA1}}{B_{XPTA1} * (T_{A2} - T_{A1})} * 10^6, ppm/^{\circ}C$$ $$where:$$ $$T_{A1} = 25^{\circ}C, T_{A2} = 150^{\circ}C,$$ $$In case of magnetic Latch application: B_{XPTA1} (B_{XPTA2}) = B_{OP} \cdot B_{RP} \text{ at } T_{A1} (T_{A2})$$ $$In case of magnetic Switch application: B_{XPTA1} (B_{XPTA2}) = B_{OP} \text{ or } B_{RP} \text{ at } T_{A1} (T_{A2})$$ # 390109229202 Page 9 of 24 Datasheet Rev.010 Feb/2020 ¹ Guaranteed by correlation with production test at B=25mT and verified by characterization ² The programming step is <0.5% of the programmed BOP or BRP value for |BOP| or |BRP| \geq 6mT and <0.02mT for |BOP| or |BRP| \leq 6mT at TA = +25°C ³ Very low hysteresis magnitude (BOP – BRP < 1mT) could lead to output toggling due to noise and mechanical looseness in the magnetic system. ⁴ The Temperature Coefficient is calculated using following formula: ⁵ The factory pre-programmed target TC value is 0ppm/°C. ⁶ TC target values # 3-wire μ Power programmable ASIL B capable Hall Effect Latch/Switch Datasheet #### 8.2 MLX92292LSE-AAA-200-RE DC Operating Parameters V_{DD} = 3.3V to 18V, T_A = -40°C to 150°C (unless otherwise specified) | Parameter | Symbol | Test Conditions | Min | Typ ⁽¹⁾ | Max | | |---|-----------------|---|-------|--------------------|-----|--------| | Operating Point programming range (1) | Вор | V _{DD} =12V, T _A =25°C | -40 | _ | 40 | mT | | Release Point programming range (1) | B _{RP} | V _{DD} =12V, T _A =25°C | -40 | _ | 40 | mT | | Operating Point magnitude programming (2,3) | Bop | | _ | 12 | _ | bit | | Release Point magnitude programming (2,3) | B _{RP} | | _ | 12 | _ | bit | | Operating Point polarity selection | Bop | | _ | 1 | _ | bit | | Release Point polarity selection | B _{RP} | | _ | 1 | _ | bit | | Direct or inverted output selection | _ | | _ | 1 | _ | bit | | Factory pre-programmed Operating Point, Latch | Вор | V _{DD} =12V, T _A =25°C,
programming target 20mT | 17 | 20 | 23 | mT | | Factory pre-programmed Release Point, Latch | B _{RP} | V _{DD} =12V, T _A =25°C,
programming target -20mT | -23 | -20 | -17 | mT | | Temperature Coefficient programming range (4,5,6) | TC | V_{DD} =12V, Latch with B_{OP} =20mT, B_{RP} = -20mT | -2400 | | 0 | ppm/°C | | Temperature Coefficient selection | TC | | _ | 5 | _ | bit | | IMC | Safe
message | Operating period, ms | Diagnostic period in Fail Safe state, ms | "Output Ticking"
duration, μs | "Output Ticking" repetition period, ms | |-----|-----------------|----------------------|--|----------------------------------|--| | Yes | TickMsg | 45 | - | 128 | 45 | $$TC = \frac{B_{XPTA2} - B_{XPTA1}}{B_{XPTA1} * (T_{A2} - T_{A1})} * 10^6, ppm/^{\circ}C$$ where: $$T_{A1} = 25^{\circ}C, T_{A2} = 150^{\circ}C,$$ In case of magnetic Latch application: B_{XPTA1} (B_{XPTA2}) = B_{OP} - B_{RP} at T_{A1} (T_{A2}) In case of magnetic Switch application: B_{XPTA1} (B_{XPTA2}) = B_{OP} or B_{RP} at T_{A1} (T_{A2}) ⁵ The factory pre-programmed target TC value is 0ppm/°C. ⁶ TC target values # 390109229202 Page 10 of 24 Datasheet Rev.010 Feb/2020 ¹ Guaranteed by correlation with production test at B=20mT and verified by characterization ² The programming step is <0.5% of the programmed BOP or BRP value for |BOP| or |BRP| ≥ 6mT and <0.02mT for |BOP| or |BRP| ≤ 6mT at TA = +25°C ³ Very low hysteresis magnitude (BOP – BRP < 1mT) could lead to output toggling due to noise and mechanical looseness in the magnetic system. ⁴ The Temperature Coefficient is calculated using following formula: 3-wire μ Power programmable ASIL B capable Hall Effect Latch/Switch Datasheet #### 8.3 MLX92292LSE-AAA-001-RE DC Operating Parameters V_{DD} = 3.3 to 18V, T_A = -40°C to 150°C | Test Condition | Operat
B _{OP} (m | ing Point
Γ) | | | | TC
(ppm/°C) | Output
behaviour | Active Pole | | |------------------------|------------------------------|--------------------|------|-----|--------------------|----------------|----------------------|--------------------|------------| | | Min | Typ ⁽¹⁾ | Max | Min | Typ ⁽¹⁾ | Max | Typ ⁽¹⁾ | | | | T _A = -40°C | 8.7 | 11 | 13.5 | 7.2 | 9.3 | 11.7 | | | | | T _A = 25°C | 8.6 | 10 | 11.4 | 7.2 | 8.5 | 9.8 | -1100 ⁽²⁾ | Inverted
switch | South pole | | T _A = 150°C | 6.7 | 8.6 | 10.7 | 5.6 | 7.4 | 9.4 | | SWILCH | | | IMC | Safe
message | Operating period, ms | Diagnostic period in Fail Safe state, ms | "Output Ticking"
duration, μs | "Output Ticking" repetition period, ms | |-----|-----------------|----------------------|--|----------------------------------|--| | No | uNoDiag | 0.16 | - | - | - | #### 8.4 MLX92291LSE-AAA-200-RE DC Operating Parameters V_{DD} = 3.3 to 18V, T_A = -40°C to 150°C | Test Condition | Operat
B _{OP} (m | ing Point
Γ) | | | | TC
(ppm/°C) | Output
behaviour | Active Pole | | |------------------------|------------------------------|--------------------|------|-----|--------------------|----------------|----------------------|-----------------|------------| | | Min | Typ ⁽¹⁾ | Max | Min | Typ ⁽¹⁾ | Max | Typ ⁽¹⁾ | | | | T _A = -40°C | 7.6 | 10.5 | 13.6 | 5.6 | 8.1 | 11 | | | | | T _A = 25°C | 7 | 9 | 11 | 5.1 | 7 | 8.9 | -2200 ⁽²⁾ | Inverted switch | South pole | | T _A = 150°C | 4.5 | 6.6 | 8.9 | 3.2 | 5.2 | 7.2 | | SWITCH | | | IMC | Safe
message | Operating period, ms | Diagnostic period in Fail Safe state, ms | "Output Ticking"
duration, μs | "Output Ticking" repetition period, ms | |-----|-----------------|----------------------|--|----------------------------------|--| | Yes | FlddMsg | - | 2 | - | - | #### 8.5 MLX92291LSE-AAA-201-RE DC Operating Parameters V_{DD} = 3.3 to 18V, T_A = -40°C to 150°C | Test Condition | Operat
B _{OP} (m | ing Point
Γ) ⁽³⁾ | | Release Point
B _{RP} (mT) ⁽³⁾ | | TC
(ppm/°C) | Output
behaviour | Active Pole | | |------------------------|------------------------------|--------------------------------|------|--|--------------------|----------------|----------------------|-----------------|------------| | | Min | Typ ⁽¹⁾ | Max | Min | Typ ⁽¹⁾ | Max | Typ ⁽¹⁾ | | | | T _A = -40°C | 7.0 | 9.6 | 12.5 | 6.7 | 9.3 | 12.1 | | | | | T _A = 25°C | 7.0 | 8.8 | 10.7 | 6.7 | 8.5 | 10.4 | -1100 ⁽²⁾ | Inverted switch | South pole | | T _A = 150°C | 5.4 | 7.7 | 10.2 | 5.2 | 7.4 | 9.9 | | 34416611 | | | IMC | Safe
message | Operating period, ms | Diagnostic period in Fail Safe state, ms | "Output Ticking"
duration, μs | "Output Ticking" repetition period, ms | |-----|-----------------|----------------------|--|----------------------------------|--| | Yes | uNoDiag | 45 | - | - | - | # 390109229202 Page 11 of 24 Datasheet Rev.010 Feb/2020 ¹ Unless otherwise specified the typical values are defined at $T_A = +25$ °C and $V_{DD} = 12V$. Melexis production testing is limited to version specific parameters only. Typical TC programmed. The Temperature Coefficient is calculated using formula from page 9/10 ³ Final magnetic parameters will be covered in the PPAP documentation set, the table below is based on theoretical calculations 3-wire μ Power programmable ASIL B capable Hall Effect Latch/Switch Datasheet #### 8.6 MLX92291LSE-AAA-202-RE DC Operating Parameters V_{DD} = 3.3 to 18V, T_A = -40°C to 150°C | Test Condition | Operating Point B _{OP} (mT) | | | | Release Point
B _{RP} (mT) | | | Output
behaviour | Active Pole | |------------------------|--------------------------------------|--------------------|-----|-----|---------------------------------------|-----|----------------------|---------------------|-------------| | | Min | Typ ⁽¹⁾ | Max | Min | Typ ⁽¹⁾ | Max | Typ ⁽¹⁾ | | | | T _A = -40°C | 3.8 | 5.9 | 8.2 | 2.8 | 4.8 | 7.0 | | | | | T _A = 25°C | 3.8 | 5.4 | 7.0 | 2.9 | 4.4 | 6.0 | -1100 ⁽²⁾ | Inverted
switch | South pole | | T _A = 150°C | 2.8 | 4.7 | 6.8 | 2.0 | 3.9 | 5.8 | | SWITCH | | | IMC | Safe
message | Operating period, ms | Diagnostic period in Fail Safe state, ms | "Output Ticking"
duration, μs | "Output Ticking" repetition period, ms | |-----|-----------------|----------------------|--|----------------------------------|--| | Yes | uNoDiag | 10 | - | - | - | #### 8.7 MLX92291LSE-AAA-005-RE DC Operating Parameters V_{DD} = 3.3 to 18V, T_A = -40°C to 150°C | Test Condition | Operat
B _{OP} (m | ing Point
Γ) | | | | TC
(ppm/°C) | Output
behaviour | Active Pole | | |------------------------|------------------------------|--------------------|------|------|--------------------|----------------|----------------------|------------------|------------| | | Min | Typ ⁽¹⁾ | Max | Min | Typ ⁽¹⁾ | Max | Typ ⁽¹⁾ | | | | T _A = -40°C | -8.5 | -6.4 | -4.4 | -9.7 | -7.5 | -5.4 | | 5 | | | T _A = 25°C | -7.2 | -6 | -4.9 | -8.2 | -7 | -5.8 | -1100 ⁽²⁾ | Direct
switch | North pole | | T _A = 150°C | -7.2 | -5.2 | -3.3 | -8.2 | -6 | -4 | | SWITCH | | | IMC | Safe
message | Operating period, ms | Diagnostic period in Fail Safe state, ms | "Output Ticking"
duration, μs | "Output Ticking" repetition period, ms | |-----|-----------------|----------------------|--|----------------------------------|--| | No | OutOnMsg | 50 | - | - | - | #### 8.8 MLX92291LSE-AAA-009-RE DC Operating Parameters V_{DD} = 3.3 to 18V, T_A = -40°C to 150°C | Test Condition | Operat
B _{OP} (m) | ating Point Release Point nT) B _{RP} (mT) | | TC
(ppm/°C) | Output
behaviour | Active Pole | | | | |------------------------|-------------------------------|--|------|----------------|---------------------|-------------|--------------------|--------------------|------------| | | Min | Typ ⁽¹⁾ | Max | Min | Typ ⁽¹⁾ | Max | Typ ⁽¹⁾ | | | | T _A = -40°C | -6.4 | -4.5 | -2.6 | -7.5 | -5.5 | -3.6 | | | | | T _A = 25°C | -5.6 | -4.5 | -3.4 | -6.6 | -5.5 | -4.4 | 0 ⁽²⁾ | Inverted
switch | North pole | | T _A = 150°C | -6.6 | -4.5 | -2.5 | -7.7 | -5.5 | -3.4 | | 34416611 | | | IMC | Safe
message | Operating period, ms | Diagnostic period in Fail Safe state, ms | "Output Ticking"
duration, μs | "Output Ticking" repetition period, ms | |-----|-----------------|----------------------|--|----------------------------------|--| | No | uNoDiag | 10 | - | - | - | ¹ Unless otherwise specified the typical values are defined at $T_A = +25$ °C and $V_{DD} = 12V$. Melexis production testing is limited to version specific parameters only. $^{^2}$ Typical TC programmed. The Temperature Coefficient is calculated using formula from page 9/10 3-wire µPower programmable ASIL B capable Hall Effect Latch/Switch Datasheet ### 8.9 MLX92291LSE-AAA-006-RE DC Operating Parameters V_{DD} = 3.3 to 18V, T_A = -40°C to 150°C | Test Condition | Operating Point B _{OP} (mT) | | | Release
B _{RP} (m | | | TC
(ppm/°C) | Output
behaviour | Active Pole | |------------------------|--------------------------------------|--------------------|------|-------------------------------|--------------------|------|----------------------|---------------------|-------------| | | Min | Typ ⁽¹⁾ | Max | Min | Typ ⁽¹⁾ | Max | Typ ⁽¹⁾ | | | | T _A = -40°C | -6.8 | -4.8 | -2.9 | -7.9 | -5.9 | -3.9 | | Inverted switch | North pole | | T _A = 25°C | -5.6 | -4.5 | -3.4 | -6.6 | -5.5 | -4.4 | -1000 ⁽²⁾ | | | | T _A = 150°C | -5.8 | -3.9 | -2.1 | -6.8 | -4.8 | -2.9 | | SWILCII | | | IMC | Safe
message | Operating period, ms | Diagnostic period in Fail Safe state, ms | "Output Ticking"
duration, μs | "Output Ticking" repetition period, ms | |-----|-----------------|----------------------|--|----------------------------------|--| | No | uNoDiag | 60 | - | - | - | #### 8.10 MLX92291LSE-AAA-010-RE DC Operating Parameters V_{DD} = 3.3 to 18V, T_A = -40°C to 150°C | Test Condition | Operating Point B _{OP} (mT) ⁽³⁾ | | | Release
B _{RP} (m1 | | | TC
(ppm/°C) | Output
behaviour | Active Pole | |------------------------|---|--------------------|-----|--------------------------------|--------------------|-----|----------------------|---------------------|-------------| | | Min | Typ ⁽¹⁾ | Max | Min | Typ ⁽¹⁾ | Max | Typ ⁽¹⁾ | | | | T _A = -40°C | 5.2 | 6.9 | 8.6 | 3.1 | 4.6 | 6.2 | | Direct
switch | South pole | | T _A = 25°C | 5.2 | 6.4 | 7.6 | 3.2 | 4.3 | 5.4 | -1100 ⁽²⁾ | | | | T _A = 150°C | 3.8 | 5.5 | 7.4 | 2.2 | 3.7 | 5.3 | | | | | IMC | Safe
message | Operating period, ms | Diagnostic period in Fail Safe state, ms | "Output Ticking"
duration, μs | "Output Ticking" repetition period, ms | |-----|-----------------|----------------------|--|----------------------------------|--| | No | TickMsg | 10 | - | 128 | 10 | #### 8.11 MLX92291LSE-AAA-008-RE DC Operating Parameters V_{DD} = 3.3 to 18V, T_A = -40°C to 150°C | Test Condition | Operating Point B _{OP} (mT) ⁽³⁾ | | | Release Point
B _{RP} (mT) ⁽³⁾ | | | TC
(ppm/°C) | Output
behaviour | Active Pole | |------------------------|---|--------------------|-------|--|--------------------|-------|----------------------|---------------------|-------------| | | Min | Typ ⁽¹⁾ | Max | Min | Typ ⁽¹⁾ | Max | Typ ⁽¹⁾ | | | | T _A = -40°C | -21.4 | -18.1 | -15 | -22.6 | -19.1 | -16 | | Direct
switch | North pole | | T _A = 25°C | -18.7 | -16.85 | -15.1 | -19.8 | -17.85 | -16 | -1100 ⁽²⁾ | | | | T _A = 150°C | -18.1 | -14.5 | -11.4 | -19.1 | -15.4 | -12.1 | | 34416611 | | | IMC | Safe
message | Operating period, ms | Diagnostic period in Fail Safe state, ms | "Output Ticking"
duration, μs | "Output Ticking" repetition period, ms | |-----|-----------------|----------------------|--|----------------------------------|--| | No | uNoDiag | 44 | - | - | - | # 390109229202 Page 13 of 24 Datasheet Rev.010 Feb/2020 $^{^{1}}$ Unless otherwise specified the typical values are defined at T_{A} = +25°C and V_{DD} = 12. Melexis production testing is limited to version specific parameters only. ² Typical TC programmed. The Temperature Coefficient is calculated using formula from page 9/10 ³ Final magnetic parameters will be covered in the PPAP documentation set, the table below is based on theoretical calculations 3-wire µPower programmable ASIL B capable Hall Effect Latch/Switch Datasheet #### 8.12 MLX92291LSE-AAA-011-RE DC Operating Parameters V_{DD} = 3.3 to 18V, T_A = -40°C to 150°C | Test Condition | Operating Point B _{OP} (mT) ⁽³⁾ | | | Release Point
B _{RP} (mT) ⁽³⁾ | | | TC
(ppm/°C) | Output
behaviour | Active Pole | |------------------------|---|--------------------|-------|--|--------------------|-------|---------------------|---------------------|-------------| | | Min | Typ ⁽¹⁾ | Max | Min | Typ ⁽¹⁾ | Max | Typ ⁽¹⁾ | | | | T _A = -40°C | -26.3 | -22.3 | -18.5 | -28.7 | -24.4 | -20.4 | | Direct
switch | North pole | | T _A = 25°C | -23.3 | -20.9 | -18.6 | -25.4 | -22.9 | -20.5 | -999 ⁽²⁾ | | | | T _A = 150°C | -22.8 | -18.3 | -14.3 | -24.8 | -20.0 | -15.8 | | SWILCIT | | | IMC | Safe
message | Operating period, ms | Diagnostic period in Fail Safe state, ms | "Output Ticking"
duration, μs | "Output Ticking" repetition period, ms | |-----|-----------------|----------------------|--|----------------------------------|--| | No | TickOnMsg | 0.86 | - | 128 | 1.72 | #### 8.13 MLX92291LSE-AAA-203-RE DC Operating Parameters V_{DD} = 3.3 to 18V, T_A = -40°C to 150°C | Test Condition | Operating Point B _{OP} (mT) ⁽³⁾ | | | Release Point
B _{RP} (mT) ⁽³⁾ | | | TC
(ppm/°C) | Output
behaviour | Active Pole | |------------------------|---|--------------------|------|--|--------------------|------|----------------------|---------------------|-------------| | | Min | Typ ⁽¹⁾ | Max | Min | Typ ⁽¹⁾ | Max | Typ ⁽¹⁾ | | | | T _A = -40°C | -5.9 | -3.6 | -1.3 | -7.0 | -4.6 | -2.3 | | Direct
switch | North pole | | T _A = 25°C | -4.8 | -3.33 | -1.8 | -5.9 | -4.33 | -2.8 | -1100 ⁽²⁾ | | | | T _A = 150°C | -5.1 | -2.9 | -0.7 | -6.0 | -3.7 | -1.6 | | SWILCH | | | IMC | Safe
message | Operating period, ms | Diagnostic period in Fail Safe state, ms | "Output Ticking"
duration, μs | "Output Ticking" repetition period, ms | |-----|-----------------|----------------------|--|----------------------------------|--| | Yes | uNoDiag | 44 | - | - | - | # 390109229202 Page 14 of 24 Datasheet Rev.010 Feb/2020 $^{^{1}}$ Unless otherwise specified the typical values are defined at T_A = +25°C and V_{DD} = 12. Melexis production testing is limited to version specific parameters only. 2 Typical TC programmed. The Temperature Coefficient is calculated using formula from page 9/10 2 Final magnetic parameters will be covered in the PPAP documentation set, the table below is based on theoretical calculations North active pole (IMC version) S N South active pole (IMC version) North active pole South active pole North active pole South active pole # 9 Magnetic Behaviour #### 9.1 Latch Sensor South Pole Active Latch North Pole Active Latch #### 9.2 Unipolar Switch Sensor Inverted South Pole Active Switch Direct North Pole Active Switch Inverted North Pole Active Switch 3-wire µPower programmable ASIL B capable Hall Effect Latch/Switch Datasheet # **10 Functional Safety Capability** ### 10.1 Sensor Development MLX92292 is developed according to the ISO26262 requirements for ASIL B level. ## 10.2 Technical Safety Requirements The main (mission) technical safety requirement for MLX92292 is the following: 10.2.1 TS RQT Mission ASIL: B MLX92292 shall not provide wrong information about the detection of presence of magnetic field done by comparing the magnetic field with magnetic thresholds Bop and Brp, each of them being within a Safe Tolerance Interval (STI) defined in mT as ±a*Bxp ±b, where Bxp is the actual magnetic threshold (Bop or Brp) and a, b are parameters depending on sensitivity direction and application temperature range. The following table shows the values of a and b for normal and lateral sensitivity device (with IMC) at 25°C and over the full temperature range. | | Ta = 25°C | Ta = -40°C150°C | | |--------------------------|----------------|-----------------|--| | Normal (orthogonal) | a = 0.18 (18%) | a = 0.22 (22%) | | | sensitive device | b = 1.4mT | b = 1.7mT | | | Lateral sensitive device | a = 0.18 (18%) | a = 0.22 (22%) | | | (with IMC) | b = 2mT | b = 2.4mT | | # 3-wire μ Power programmable ASIL B capable Hall Effect Latch/Switch Datasheet # 10.2.2 TS_RQT_Safe_Message MLX92292 shall report detected failures that could prevent TS_RQT_Mission. One of the following programmable Safe Message options can be chosen depending on the application: | Message
Option | B <brp
Diagnostic OK</brp
 | B>Bop
Diagnostic OK | All B values
Diagnostic
Failed | Diagnostic
Coverage | Safe States | |---------------------------|---|--|---|------------------------|--| | μ-Power Mode | | | | SPFM | | | TickMsg ^(1,2) | OUT = Off+Ticking | OUT = On+Ticking | OUT = Off | 92% | Bop, BRP within STI;
OUT = On/Off w/o ticking | | TickOffMsg ⁽¹⁾ | OUT = Off+Ticking | OUT = On | OUT = Off | 82% | B _{OP} , B _{RP} within STI ;
OUT = Off | | TickOnMsg ⁽²⁾ | OUT = Off | OUT = On+Ticking | OUT = On | 55% | B _{OP} , B _{RP} within STI;
OUT = On | | OutOffMsg | OUT = Off | OUT = On | OUT = Off | 82% | Bop, BRP within STI;
OUT = Off | | OutOnMsg | OUT = Off | OUT = On | OUT = On | 55% | Bop, BRP within STI;
OUT = On | | StbyX2Msg ⁽³⁾ | OUT = Off | OUT = On | OUT = Off Twice increased Top | 77% | Bop, BRP within STI;
Twice increased Top | | uNoDiag ⁽⁴⁾ | OUT = Off | OUT = On | - | No diagnostic | B _{OP} , B _{RP} within STI | | Fast Mode | | | | | | | FlddMsg | OUT = Off,
I _{DD} = I _{DDFAST} | OUT = On,
I _{DD} = I _{DDFAST} | OUT = Off,
I _{DD} = I _{DDFAIL} | 67% | Bop, Brp within STI;
OUT=Off & I _{DD} =I _{DDFAIL} | | FNoDiag ⁽⁴⁾ | OUT = Off | OUT = On | - | No diagnostic | B _{OP} , B _{RP} within STI | Note (1) Off+Ticking signal means that the Off state duration lasts significantly longer than the On state duration. Note~(2)~On+Ticking~signal~means~that~the~On~state~duration~lasts~significantly~longer~than~the~Off~state~duration. Note (3) If T_{OP} is set <5ms then T_{OP} increases less than twice in case of diagnostic fail. Note (4) This message option does not offer integrated diagnostic. 3-wire µPower programmable ASIL B capable Hall Effect Latch/Switch **Datasheet** # 11 Application Information #### 11.1 Typical Automotive Application Circuit #### Notes: - 1. For proper operation, a 10nF to 100nF bypass capacitor should be placed as close as possible to the V_{DD} and ground pin. - 2. A capacitor connected to the output will improve the EMC performance ### 11.2 Automotive and Harsh, Noisy Environments Application Circuit - 1. For proper operation the bypass capacitor C1 should be placed as close as possible to the VDD and GND pins. - 2. If negative transients over supply line V_{PEAK}< -30V are expected, usage of the diode D1 is recommended. Otherwise only R1 is sufficient. When selecting the resistor R1, three points are important: - the resistor has to limit I_{DD}/I_{DDREV} to 40mA maximum - the resistor has to withstand the power dissipated in both over voltage conditions $(V_{R1}^{2}/R1)$ - the resulting device supply voltage V_{DD} has to be higher than V_{DD} min ($V_{DD} = V_{CC} R1.I_{DD}$) - 3. If positive transients over supply line with V_{PEAK}> 40V are expected, usage of Zener diode Z1 is recommended. The R1-Z1 network should be sized to limit the voltage over the device below the maximum allowed. # **12 Package Information** # 12.1 UA (TO92-3L) Package Information Marking: 1st Line : 92WW 92: referring to design number WW: calendar week number WW. Caleffual Week 2^{nd} Line : YLLL Y - last digit of year LLL - Last three digits of lot number | | Α | D | Е | F | J | L | L1 | S | b1 | b2 | С | е | e1 | |-----|--------|--------|---------|--------|------|------|------|------|------|------|------|------|------| | min | 2.80 | 3.90 | 1.40 | 0.00 | 2.51 | 14.0 | 0.90 | 0.63 | 0.35 | 0.43 | 0.35 | 2.51 | 1.24 | | max | 3.20 | 4.30 | 1.60 | 0.20 | 2.72 | 15.0 | 1.10 | 0.84 | 0.44 | 0.52 | 0.44 | 2.57 | 1.30 | | | θ1 | θ2 | θ3 | θ4 | | | | | | | | | | | min | 7° REF | 7° REF | 45° REF | 7° DEE | | | | | | | | | | | max | | / KEF | 45 KEF | 7° REF | | | | | | | | | | #### Hall plate location #### Notes: - 1. All dimensions are in millimetres. - 2. Mold flashes and protrusion are not included. - 3. Gate burrs shall not exceed 0.127mm on the top side. | UA Pin № | Name | Туре | Function | |----------|------|--------|--------------------| | 1 | VDD | Supply | Supply Voltage pin | | 2 | GND | Ground | Ground pin | | 3 | OUT | Output | Open Drain Output | # 12.2 SE (TSOT-3L) Package Information Marking: TOP: 92WW - Normal sensitivity version 93WW - Lateral sensitivity version WW: Assembly week BOTTOM: YLLL Y: Assembly Year LLL: Last 3 digits from lot# | | Α | A1 | A2 | D | E | E1 | L | b | С | е | e1 | α | |-----|------|-------|------|------|------|------|------|------|------|------|------|----| | min | _ | 0.025 | 0.85 | 2.80 | 2.60 | 1.50 | 0.30 | 0.30 | 0.10 | 0.95 | 1.90 | 0° | | max | 1.00 | 0.10 | 0.90 | 3.00 | 3.00 | 1.70 | 0.50 | 0.45 | 0.20 | BSC | BSC | 8° | #### Notes: - All dimensions are in millimetres. - Dimension "D" and "E1" do not include mold flash or protrusions. Mold flash or protrusion shall not exceed 0.15mm on "D" and 0.25mm on "E" per side. - Dimension "b" does not include dambar protrusion. | SE Pin № | Name | Туре | Function | |----------|------|--------|--------------------| | 1 | VDD | Supply | Supply Voltage pin | | 2 | OUT | Output | Open Drain output | | 3 | GND | Ground | Ground pin | Table 2: SE Package pinout 3-wire µPower programmable ASIL B capable Hall Effect Latch/Switch Datasheet # 13 Standard information regarding manufacturability of Melexis products with different soldering processes Our products are classified and qualified regarding soldering technology, solderability and moisture sensitivity level according to following test methods: #### Reflow Soldering SMD's (Surface Mount Devices) IPC/JEDEC J-STD-020 Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices (classification reflow profiles according to table 5-2) EIA/JEDEC JESD22-A113 Preconditioning of Nonhermetic Surface Mount Devices Prior to Reliability Testing (reflow profiles according to table 2) #### Wave Soldering SMD's (Surface Mount Devices) and THD's (Through Hole Devices) FN60749-20 Resistance of plastic- encapsulated SMD's to combined effect of moisture and soldering heat EIA/JEDEC JESD22-B106 and EN60749-15 Resistance to soldering temperature for through-hole mounted devices #### Iron Soldering THD's (Through Hole Devices) EN60749-15 Resistance to soldering temperature for through-hole mounted devices #### Solderability SMD's (Surface Mount Devices) and THD's (Through Hole Devices) EIA/JEDEC JESD22-B102 and EN60749-21 Solderability For all soldering technologies deviating from above mentioned standard conditions (regarding peak temperature, temperature gradient, temperature profile etc) additional classification and qualification tests have to be agreed upon with Melexis. The application of Wave Soldering for SMD's is allowed only after consulting Melexis regarding assurance of adhesive strength between device and board. Melexis is contributing to global environmental conservation by promoting **lead free** solutions. For more information on qualifications of **RoHS** compliant products (RoHS = European directive on the Restriction Of the use of certain Hazardous Substances) please visit the quality page on our website: http://www.melexis.com/quality.aspx #### 14 ESD Precautions Electronic semiconductor products are sensitive to Electro Static Discharge (ESD). Always observe Electro Static Discharge control procedures whenever handling semiconductor products. #### 15 Contact **Datasheet** For the latest version of this document, go to our website at www.melexis.com. For additional information, please contact our Direct Sales team and get help for your specific needs: | Europe, Africa | Telephone: +32 13 67 04 95 | |----------------|---------------------------------| | | Email: sales_europe@melexis.com | | Americas | Telephone: +1 603 223 2362 | | | Email : sales_usa@melexis.com | | Asia | Email : sales_asia@melexis.com | #### 16 Disclaimer The information furnished by Melexis herein ("Information") is believed to be correct and accurate. Melexis disclaims (i) any and all liability in connection with or arising out of the furnishing, performance or use of the technical data or use of the product(s) as described herein ("Product") (ii) any and all liability, including without limitation, special, consequential or incidental damages, and (iii) any and all warranties, express, statutory, implied, or by description, including warranties of fitness for particular purpose, noninfringement and merchantability. No obligation or liability shall arise or flow out of Melexis' rendering of technical or other services. The Information is provided "as is" and Melexis reserves the right to change the Information at any time and without notice. Therefore, before placing orders and/or prior to designing the Product into a system, users or any third party should obtain the latest version of the relevant information to verify that the information being relied upon is Users or any third party must further determine the suitability of the Product for its application, including the level of reliability required and determine whether it is fit for a particular purpose. The Information is proprietary and/or confidential information of Melexis and the use thereof or anything described by the Information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights. This document as well as the Product(s) may be subject to export control regulations. Please be aware that export might require a prior authorization from competent authorities. The Product(s) are intended for use in normal commercial applications. Unless otherwise gareed upon in writing, the Product(s) are not designed, authorized or warranted to be suitable in applications requiring extended temperature range and/or unusual environmental requirements. High reliability applications, such as medical life-support or lifesustaining equipment are specifically not recommended by Melexis. The Product(s) may not be used for the following applications subject to export control regulations: the development, production, processing, operation, maintenance, storage, recognition or proliferation of 1) chemical, biological or nuclear weapons, or for the development, production, maintenance or storage of missiles for such weapons: 2) civil firearms, including spare parts or ammunition for such arms; 3) defense related products, or other material for military use or for law enforcement; 4) any applications that, alone or in combination with other goods, substances or organisms could cause serious harm to persons or goods and that can be used as a means of violence in an armed conflict or any similar violent situation. The Products sold by Melexis are subject to the terms and conditions as specified in the Terms of Sale, which can be found at https://www.melexis.com/en/legal/terms-and- This document supersedes and replaces all prior information regarding the Product(s) and/or previous versions of this document. Melexis NV © - No part of this document may be reproduced without the prior written consent of Melexis. (2016) ISO/TS 16949 and ISO14001 Certified