Ultra-Low Power Biometric Sensor Hub

General Description

The MAX32664 is a sensor hub family with embedded firmware and world-class algorithms for wearables. It seamlessly enables customer-desired sensor functionality, including communication with Maxim's optical sensor solutions and delivering raw or calculated data to the outside world. This is achieved while keeping overall system power consumption in check. The device family interfaces to a microcontroller host via a fast-mode slave I²C interface for access to raw and processed sensor data as well as field updates. A firmware bootloader is also provided.

The MAX32664 Version A supports the MAX30101/ MAX30102 high-sensitivity pulse oximeter and heart-rate sensor for wearable health for finger-based applications. A master mode I^2C interface for communication with sensors is provided.

The MAX32664 Version B supports the MAX86140/ MAX86141 for wrist-based applications. A master mode SPI interface for communication with sensors is provided.

The MAX32664 Version C supports the MAX86140/ MAX86141 for wrist-based applications and MAXM86161 for ear-based applications. The device provides either a master mode SPI or an I^2C interface for communication with sensors.

The MAX32664 Version D supports the MAX30101/ MAX30102 high-sensitivity pulse oximeter and heart-rate sensor for wearable health for finger-based applications. A master mode I²C interface for communication with sensors is provided. Version D also supports estimated blood pressure monitoring.

The wearable algorithms in the MAX32664 sensor hub support a directly connected accelerometer. They also allow feeding of X, Y, and Z samples from a host-connected accelerometer. This architecture provides robust detection and compensation of motion artifacts in captured samples.

The tiny form factor 1.6mm x 1.6mm WLP or 3mm x 3mm TQFN allows for integration into extremely small application devices.

Applications

- Wearable Fitness
- Hearables
- Wearable Medical
- Portable Medical
- Mobile Devices

Benefits and Features

- Biometric Sensor Hub Enables Faster Time to Market
- Finger-Based (Version A) Algorithms Measure:
 - Pulse Heart Rate
 - Pulse Blood Oxygen Saturation (SpO₂)
- Wrist-Based (Version B) Algorithm Measures:
 Pulse Heart Rate
 - Wrist-Based or Ear-Based (Version C) Algorithms Measure:
 - Pulse Heart Rate
 - Pulse Blood Oxygen Saturation (SpO₂)
- Finger-Based (Version D) Algorithms Measure:
 - Pulse Heart Rate
 - Pulse Blood Oxygen Saturation (SpO₂)
 - · Estimated Blood Pressure
- Both Raw and Processed Data Are Available
- Basic Peripheral Mix Optimizes Size and Performance
- One Slave I²C for Communication with a Host Microcontroller
- One Master I²C for Communication with Sensors (Versions A, C, and D)
- One Master SPI for Communication with Sensors (Versions B and C)
- 32.768kHz RTC
- FIFO Provides Minimal Host Interaction
- Bootloader Facilitates Secure, Authenticated Firmware Upgrades

Ordering Information appears at end of data sheet.

Ultra-Low Power Biometric Sensor Hub

Simplified Block Diagram

Ultra-Low Power Biometric Sensor Hub

TABLE OF CONTENTS

General Description	. 1
Applications	. 1
Benefits and Features	. 1
Simplified Block Diagram	. 2
Absolute Maximum Ratings	. 7
Package Information	. 7
16 WLP	. 7
24 TQFN-EP	. 7
Electrical Characteristics	. 7
Electrical Characteristics—I ² C	. 9
Electrical Characteristics—SPI	. 9
Pin Configuration MAX32664 Version A, Version C, Version D 16-WLP I ² C Interface to Sensors	12
	12
Pin Descriptions MAX32664 Version A, Version C, Version D 16-WLP I ² C Interface to Sensors	12
Pin Configuration MAX32664 Version B, Version C 16-WLP SPI Interface to Sensors	14
	14
Pin Descriptions MAX32664 Version B, Version C 16-WLP SPI Interface to Sensors	14
Pin Configuration MAX32664 Version A, Version C, Version D 24-TQFN I ² C Interface to Sensors	16
	16
Pin Descriptions MAX32664 Version A, Version C, Version D 24-TQFN I ² C Interface to Sensors	16
Pin Configuration MAX32664 Version B and Version C 24-TQFN SPI Interface to Sensors	18
	18
Pin Descriptions MAX32664 Version B and Version C 24-TQFN SPI Interface to Sensors	18
Detailed Description	20
MAX32664	20
Finger Heart Rate, SpO ₂ Algorithm (Version A).	20
Wrist Heart Rate Algorithm (Version B)	20
Wrist or Ear Heart Rate, SpO ₂ Algorithm (Version C)	20
Finger Heart Rate, SpO ₂ , Blood Pressure Algorithm (Version D)	20
Algorithm Selection and Evaluation	20
Interface to Host	21
Interface to the Sensors	21
Device Selection.	21
Applications Information	22
Evaluation Platforms	22
Typical Application Circuits	22
MAX32664 VERSION A FINGER-BASED HEART RATE AND SpO2 MONITOR I ² C INTERFACE TO SENSORS	22
MAX32664 VERSION B WRIST-BASED HEART RATE MONITOR SPI INTERFACE TO SENSORS	23

TABLE OF CONTENTS (CONTINUED)

MAX32664 VERSION C EAR-BASED HEART	RATE AND SpO ₂ MONITOR I ² C INTERFACE TO SENSORS 24
MAX32664 VERSION C WRIST-BASED HEAF	RT RATE AND SpO ₂ MONITOR SPI INTERFACE TO SENSORS . 25
	RT RATE, SpO2, BLOOD PRESSURE MONITOR I ² C INTERFACE
Ordering Information	
Revision History	

MAXIM INTEGRATED CONFIDENTIAL

MAX32664

Ultra-Low Power Biometric Sensor Hub

LIST OF FIGURES

Figure 1. I ² C Timing Diagram	10
Figure 2. SPI Master Mode Timing Diagram	11

LIST OF TABLES

Table 1. Evaluation Platforms	22
-------------------------------	----

Absolute Maximum Ratings

V _{DD}	0.3V to +3.63V
32KIN, 32KOUT	
All Digital Pins0.3	$3V$ to $V_{DD}^{}$ + 0.3V
Total Current into All Digital Pins Combined (sin	k) 100mA
V _{SS}	100mA
Output Current (sink) by Any Digital Pin	25mA

:: (All voltages with respect to V_{SS}, unless otherwise noted.)

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Information

16 WLP

Package Code	W161K1+1			
Outline Number	<u>21-100241</u>			
Land Pattern Number	Refer to Application Note 1891			
Thermal Resistance, Four-Layer Board:				
Junction to Ambient (θ_{JA})	66.34 °C/W			
Junction to Case (θ_{JC})	N/A			

24 TQFN-EP

Package Code	T2433+2C
Outline Number	<u>21-100264</u>
Land Pattern Number	<u>90-100089</u>
Thermal Resistance, Four-Layer Board:	
Junction to Ambient (θ _{JA})	61.3 °C/W
Junction to Case (θ_{JC})	2.2 °C/W

For the latest package outline information and land patterns (footprints), go to <u>www.maximintegrated.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to <u>www.maximintegrated.com/thermal-tutorial</u>.

Electrical Characteristics

(Limits are 100% tested at $T_A = +25^{\circ}$ C and $T_A = +105^{\circ}$ C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested. Specifications to the minimum operating temperature are guaranteed by design and are not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
POWER SUPPLIES						
Supply Voltage	V _{DD}		1.71	1.8	3.63	V
Power-Fail Reset Voltage	V _{RST}	Monitors V _{DD}	1.63		1.71	V
Power-On Reset Voltage	V _{POR}	Monitors V _{DD}		1.4		V

Ultra-Low Power Biometric Sensor Hub

Electrical Characteristics (continued)

(Limits are 100% tested at $T_A = +25^{\circ}$ C and $T_A = +105^{\circ}$ C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested. Specifications to the minimum operating temperature are guaranteed by design and are not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DIGITAL I/O			1			
Input Low Voltage for RSTN, SLAVE_SCL, SENSOR_SDA, SENSOR_MISO, PPG_INT, ACCEL_INT, MFIO	VIL				0.3 × V _{DD}	V
Input High Voltage for RSTN, SLAVE_SCL, SENSOR_SDA, SENSOR_MISO, PPG_INT, ACCEL_INT, MFIO, HR_INT, SLAVE_SDA	VIH		0.7 × V _{DD}			V
Output Low Voltage for SENSOR_SDA, SENSOR_SCL, SLAVE_SDA	V _{OL_I2C}	V _{DD} = 1.71V, I _{OL} = 2mA		0.2	0.4	V
Output High Voltage for SENSOR_SDA, SENSOR_SCL, SLAVE_SDA	V _{OH_I2C}	V _{DD} = 1.71V, I _{OH} = 2mA	V _{DD} - 0.4			V
Output High Voltage for PPG_CS, ACCEL_CS, SENSOR_MOSI, SENSOR_SCK, MFIO	V _{OH}	I _{OH} = 1mA	V _{DD} - 0.4			V
Input Hysteresis (Schmitt)	V _{IHYS}			300		mV
Input/Output Pin Capacitance for All Pins	C _{IO}			4		pF
Input Leakage Current Low	Ι _{ΙL}	V _{IN} = 0V	-500		+500	nA
Input Leakage Current High	IIН	V _{IN} = 3.6V	-500		+500	nA
Input Pullup Resistor to RSTN	R _{PU_VDD}	Pullup to V_{DD} = 3.63V		10.5		kΩ
CLOCKS						
System Clock Frequency	^f sys_clk			96		MHz
RTC Input Frequency	f32KIN	32.768kHz watch crystal, C _L = 6pF, ESR < 90kΩ, C ₀ < 2pF		32.768		kHz
RTC Operating Current	I _{RTC}	All power modes, RTC enabled		0.45		μA
RTC Power-Up Time	^t RTC_ON			250		ms

Ultra-Low Power Biometric Sensor Hub

Electrical Characteristics—I²C

(Limits are 100% tested at $T_A = +25^{\circ}$ C and $T_A = +105^{\circ}$ C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested. Specifications to the minimum operating temperature are guaranteed by design and are not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
FAST MODE			•			
Output Fall Time	t _{OF}	From V _{OL_I2C(MIN)} to V _{OL_I2C(MAX)}		150		ns
Pulse Width Suppressed by Input Filter	t _{SP}			75		ns
SCL Clock Frequency	f _{SCL}		0		400	kHz
Low Period SCL Clock	tLOW		1.3			μs
High Time SCL Clock	thigh		0.6			μs
Setup Time for Repeated Start Condition	^t su;sta		0.6			μs
Hold Time for Repeated Start Condition	^t HD;STA		0.6			μs
Data Setup Time	t _{SU;DAT}			125		ns
Data Hold Time	t _{HD;DAT}			10		ns
Rise Time for SDA and SCL	t _R			30		ns
Fall Time for SDA and SCL	t _F			30		ns
Setup Time for a Stop Condition	^t su;sto		0.6			μs
Bus Free Time Between a Stop and Start Condition	t _{BUS}		1.3			μs
Data Valid Time	t _{VD;DAT}		0.9			μs
Data Valid Acknowledge Time	t _{VD;ACK}		0.9			μs

Electrical Characteristics—SPI

(TIming specifications are guaranteed by design and not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
MASTER MODE			÷			
SPI Master Operating Frequency	fмск				48	MHz
SPI Master SCK Period	t _{MCK}			1/f _{MCK}		ns
SCK Output Pulse- Width High/Low	t _{MCH} , t _{MCL}		t _{MCK} /2			ns
MOSI Output Hold Time After SCK Sample Edge	^t мон		t _{MCK} /2			ns
MOSI Output Valid to Sample Edge	t _{MOV}		t _{MCK} /2			ns

Ultra-Low Power Biometric Sensor Hub

Electrical Characteristics—SPI (continued)

(TIming specifications are guaranteed by design and not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
MISO Input Valid to SCK Sample Edge Setup	t _{MIS}			5		ns
MISO Input to SCK Sample Edge Hold	t _{MIH}			t _{MCK} /2		ns

Figure 1. I²C Timing Diagram

Ultra-Low Power Biometric Sensor Hub

Figure 2. SPI Master Mode Timing Diagram

Pin Configuration MAX32664 Version A, Version C, Version D 16-WLP I²C Interface to Sensors

Pin Descriptions MAX32664 Version A, Version C, Version D 16-WLP I²C Interface to Sensors

PIN		FUNCTION MODE	FUNCTION	
PIN	NAME	Signal Name	FUNCTION	
POWER				
A3 V _{DD} Digital Supply Voltage		Digital Supply Voltage	This pin must be bypassed to V_{SS} with a 1.0µF capacitor as close as possible to the package. The device operates solely from this one power supply pin.	
A4 V _{CORE}		Core Supply Voltage	V_{CORE} must always be bypassed to V_{SS} with a $1.0\mu F$ capacitor as close as possible to the package. Do not connect this device pin to any other circuits.	
B2	V _{SS}	Digital Ground		
CLOCK				
A2	32KIN	32.768kHz Crystal Oscillator Input	Connect a 32.768kHz crystal between 32KIN and 32KOUT for RTC operation. Optionally, an external clock source can be driven on 32KIN if the 32KOUT pin is left unconnected.	
A1	32KOUT	32.768kHz Crystal Oscillator Output		

•

Ultra-Low Power Biometric Sensor Hub

PIN	NAME	FUNCTION MODE	FUNCTION		
FIN	NAME	Signal Name			
RESET					
B1 RSTN		Reset	Hardware Power Reset (Active-Low) Input. The device remains in reset while this pin is in its active state. When the pin transitions to its inactive state, the device performs a reset (resetting all logic on all supplies except for real-time clock circuitry) and begins execution. This pin is internally connected with an internal pullup to the V _{DD} supply as indicated in the Electrical Characteristics table. Add and place a noise snubber circuit as close as possible to the device, with component values shown in the Typical Application Circuits.		
l ² C	•				
D1	SLAVE_SCL	I ² C Slave Clock	This is the I ² C slave SCL that should be connected to the host I ² C master SCL.		
D2	SLAVE_SDA	I ² C Slave Data	This is the I ² C slave SDA that should be connected to the host I ² C master SDA.		
B4	SENSOR_SCL	I ² C Sensor Clock	This is the I^2C master SCL that should be connected to the I^2C slave SCL on the slave sensors.		
В3	SENSOR_SDA	I ² C Sensor Data	This is the I^2C master SDA that should be connected to the I^2C slave SDA on the slave sensors.		
INTERRUPT	S				
C4	HR_INT	Heart Rate/PPG Monitor Interrupt Input	This pin connects to the heart rate/PPG monitor sensor interrupt output.		
C3	ACCEL_INT	Accelerometer Interrupt Input	This pin connects to the accelerometer sensor interrupt output.		
C2	MFIO	Multifunction IO	Versions A/D: This pin provides different functions. MFIO asserts low as an output when the sensor hub needs to communication with the host; MFIO acts as an input and when held low during a reset, the sensor hub enters bootloader mode. Version C: The host asserts MFIO low when it needs to communicate with the sensor hub; MFIO acts as an input and when held low during a reset, the sensor hub enters bootloader mode.		
DO NOT CO	NNECT				
C1, D3, D4	D.N.C.	Do Not Connect	This pin is internally connected. Do not make any electrical connection, including ${\rm V}_{\rm SS},$ to this pin.		

Pin Configuration MAX32664 Version B, Version C 16-WLP SPI Interface to Sensors

Pin Descriptions MAX32664 Version B, Version C 16-WLP SPI Interface to Sensors

PIN	NAME	FUNCTION MODE	FUNCTION
PIN	NAME	Signal Name	FUNCTION
POWER			
A3	V _{DD}	Digital Supply Voltage	This pin must be bypassed to V_{SS} with a 1.0µF capacitor as close as possible to the package. The device operates solely from this one power supply pin.
A4	V _{CORE}	Core Supply Voltage	V_{CORE} must always be bypassed to V_{SS} with a 1.0 μF capacitor as close as possible to the package. Do not connect this device pin to any other circuits.
B2	V _{SS}	Digital Ground	
CLOCK			
A2	32KIN	32.768kHz Crystal Oscillator Input	Connect a 32.768kHz crystal between 32KIN and 32KOUT for RTC operation. Optionally, an external clock source can be driven on 32KIN if the 32KOUT pin is left unconnected.
A1	32KOUT	32.768kHz Crystal Oscillator Output	
RESET	1		
B1	RSTN	Reset	Hardware Power Reset (Active-Low) Input. The device remains in reset while this pin is in its active state. When the pin transitions to its inactive state, the device performs a reset (resetting all logic on all supplies except for real-time clock circuitry) and begins execution. This pin is internally connected with an internal pullup to the V_{DD} supply as indicated in the Electrical Characteristics table. Add and place a noise snubber circuit as close as possible to the device, with component values shown in the Typical Application Circuits.

•

Ultra-Low Power Biometric Sensor Hub

PIN	NAME	FUNCTION MODE	FUNCTION	
FIN	NAME	Signal Name	FUNCTION	
SPI				
C3	SENSOR_SCK	SPI Master Clock for Sensors	This is the SPI master clock that should be connected to the sensor SPI SCK.	
D3	SENSOR_MISO	SPI Master In Slave Out	This is the SPI master in slave out that should be connected to the sensor SPI data output pin.	
D4	SENSOR_MOSI	SPI Master Out Slave In	This is the SPI master out slave in that should be connected to the sensor SPI data input pin.	
C4	PPG_CS	PPG Sensor Chip Select	This is the SPI master PPG sensor chip select output that should be connected to the SPI slave PPG sensor chip select input.	
C1	ACCEL_CS	Accelerometer Chip Select	This is the SPI master accelerometer chip select output that should be connected to the SPI slave accelerometer chip select input.	
l ² C				
D1	SLAVE_SCL	I ² C Slave Clock	This is the I ² C slave SCL that should be connected to the host I ² C master SCL.	
D2	SLAVE_SDA	I ² C Slave Data	This is the I^2C slave SDA that should be connected to the host I^2C master SDA.	
INTERRUPT	S			
B4	PPG_INT	PPG Sensor Interrupt Input	This pin connects to the PPG sensor interrupt output.	
B3	ACCEL_INT	Accelerometer Interrupt Input	This pin connects to the accelerometer sensor interrupt output.	
C2	MFIO	Multifunction IO	The MFIO pin provides different functions. MFIO acts as an input and when held low during a reset, the sensor hub enters bootloader mode. The host asserts MFIO low when it needs to communicate with the sensor hub.	

Pin Configuration MAX32664 Version A, Version C, Version D 24-TQFN I²C Interface to Sensors

Pin Descriptions MAX32664 Version A, Version C, Version D 24-TQFN I²C Interface to Sensors

PIN		FUNCTION MODE	FUNCTION	
PIN	NAME	Signal Name	FUNCTION	
POWER				
11, 22 V _{DD} Digital Supply Voltage		Digital Supply Voltage	This pin must be bypassed to V_{SS} with a 1.0µF capacitor as close as possible to the package. The device operates solely from this one power supply pin.	
12	12 V _{CORE} Core Supply Voltage		V_{CORE} must always be bypassed to V_{SS} with a 1.0 μF capacitor as close as possible to the package. Do not connect this device pin to any other circuits.	
7, 10	V _{SS}	Digital Ground		
EP EP Exposed Pad		Exposed Pad	Exposed Pad (TQFN Only). This pad must be connected to V_{SS} . Refer to Application Note 3273: <i>Exposed Pads: A Brief Introduction</i> for additional information.	
CLOCK		·		
9 32KIN 32.768kHz Crystal Oscillator Input		,	Connect a 32.768kHz crystal between 32KIN and 32KOUT for RTC operation. Optionally, an external clock source can be driven on 32KIN if the 32KOUT pin is left unconnected.	
8	32KOUT	32.768kHz Crystal Oscillator Output		

•

Ultra-Low Power Biometric Sensor Hub

PIN	NAME	FUNCTION MODE	FUNCTION		
PIN		Signal Name	FUNCTION		
RESET					
6 RSTN		Reset	Hardware Power Reset (Active-Low) Input. The device remains in reset while this pin is in its active state. When the pin transitions to its inactive state, the device performs a reset (resetting all logic on all supplies except for real-time clock circuitry) and begins execution. This pin is internally connected with an internal pullup to the V _{DD} supply as indicated in the Electrical Characteristics table. Add and place a noise snubber circuit as close as possible to the device, with component values shown in the Typical Application Circuits.		
l ² C					
24	SLAVE_SCL	I ² C Slave Clock	This is the I ² C slave SCL that should be connected to the host I ² C master SCL.		
23	SLAVE_SDA	I ² C Slave Data	This is the I ² C slave SDA that should be connected to the host I ² C master SDA.		
14	SENSOR_SCL	I ² C Sensor Clock	This is the I ² C master SCL that should be connected to the I ² C slave SCL on the slave sensors.		
13	SENSOR_SDA	I ² C Sensor Data	This is the I ² C master SDA that should be connected to the I ² C slave SDA on the slave sensors.		
INTERRUPTS	S	1			
18	HR_INT	Heart Rate/PPG Monitor Interrupt Input	This pin connects to the heart rate/PPG monitor sensor interrupt output.		
19	ACCEL_INT	Acceleraometer Interrupt Input	This pin connects to the accelerometer sensor interrupt output.		
1	MFIO	Multifunction IO	Versions A/D: This pin provides different functions. MFIO asserts low as an output when the sensor hub needs to communication with the host; MFIO acts as an input and when held low during a reset, the sensor hub enters bootloader mode. Version C: The host asserts MFIO low when it needs to communicate with the sensor hub; MFIO acts as an input and when held low during a reset, the sensor hub enters bootloader mode.		
DO NOT CON	NNECT				
2, 4, 5, 16, 17, 20, 21	D.N.C.	Do Not Connect	This pin is internally connected. Do not make any electrical connection, including $V_{\rm SS},$ to this pin.		
NOT CONNE	CTED				
3, 15	NC	Not Connected. This pin is not connected to the die and can be used to route any signal.	This pin is not connected to the die and can be used to route any signal.		

Pin Configuration MAX32664 Version B and Version C 24-TQFN SPI Interface to Sensors

Pin Descriptions MAX32664 Version B and Version C 24-TQFN SPI Interface to Sensors

PIN		FUNCTION MODE	FUNCTION	
PIN	NAME	Signal Name	FUNCTION	
POWER				
11, 22 V _{DD} Digital Supply Volta		Digital Supply Voltage	This pin must be bypassed to V_{SS} with a 1.0µF capacitor as close as possible to the package. The device operates solely from this one power supply pin.	
12	12 V _{CORE} Core Supply Voltage		V_{CORE} must always be bypassed to V_{SS} with a 1.0 μF capacitor as close as possible to the package. Do not connect this device pin to any other circuits.	
7, 10	V _{SS}	Digital Ground		
EP EP Exposed Pad		Exposed Pad	Exposed Pad (TQFN Only). This pad must be connected to V_{SS} . Refer to Application Note 3273: <i>Exposed Pads: A Brief Introduction</i> for additional information.	
CLOCK		·		
9 32KIN 32.768kHz Crystal Oscillator Input		,	Connect a 32.768kHz crystal between 32KIN and 32KOUT for RTC operation. Optionally, an external clock source can be driven on 32KIN if the 32KOUT pin is left unconnected.	
8	32KOUT	32.768kHz Crystal Oscillator Output		

•

Ultra-Low Power Biometric Sensor Hub

DIN		FUNCTION MODE	FUNCTION	
PIN	NAME	Signal Name		
RESET				
6 RSTN		Reset	Hardware Power Reset (Active-Low) Input. The device remains in reset while this pin is in its active state. When the pin transitions to its inactive state, the device performs a reset (resetting all logic on all supplies except for real-time clock circuitry) and begins execution. This pin is internally connected with an internal pullup to the V _{DD} supply as indicated in the Electrical Characteristics table. Add and place a noise snubber circuit as close as possible to the device, with component values shown in the Typical Application Circuits.	
SPI				
19	SENSOR_SCK	SPI Master Clock for Sensors	This is the SPI master clock that should be connected to the sensor SPI SCK.	
21	SENSOR_MISO	SPI Master In Slave Out	This is the SPI master in slave out that should be connected to the sensor SPI data output pin.	
20	SENSOR_MOSI	SPI Master Out Slave In	This is the SPI master out slave in that should be connected to the sensor SPI data input pin.	
18	PPG_CS	PPG Sensor Chip Select	This is the SPI master PPG sensor chip select output that should be connected to the SPI slave PPG sensor chip select input.	
2	ACCEL_CS	Accelerometer Chip Select	This is the SPI master accelerometer chip select output that should be connected to the SPI slave accelerometer chip select input.	
l ² C			-	
24	SLAVE_SCL	I ² C Slave Clock	This is the I ² C slave SCL that should be connected to the host I ² C master SCL.	
23	SLAVE_SDA	I ² C Slave Data	This is the I ² C slave SDA that should be connected to the host I ² C master SDA.	
INTERRUPTS	6			
14	PPG_INT	PPG Sensor Interrupt Input	This pin connects to the PPG sensor interrupt output.	
13	ACCEL_INT	Accelerometer Interrupt Input	This pin connects to the accelerometer sensor interrupt output.	
1	MFIO	Multifunction IO	This pin provides different functions. MFIO acts as an input and when held low during a reset, the sensor hub enters bootloader mode. The host asserts MFIO low when it needs to communicate with the sensor hub.	
DO NOT COM	INECT		•	
4, 5, 16, 17	D.N.C.	Do Not Connect	This pin is internally connected. Do not make any electrical connection, including $V_{\rm SS},$ to this pin.	
NOT CONNE	CTED			
3, 15	NC	Not Connected. This pin is not connected to the die and can be used to route any signal.	This pin is not connected to the die and can be used to route any signal.	

Detailed Description

MAX32664

The MAX32664 is a sensor hub family with embedded firmware and algorithms for wearables. It seamlessly enables customer-desired sensor functionality, including communication with Maxim's optical sensor solutions and delivering raw or calculated data to the outside world. This is achieved while keeping overall system power consumption in check. The device family interfaces to a microcontroller host via a fast-mode slave I²C interface for access to raw and processed sensor data as well as field updates. The sampling is adjusted automatically by the algorithm to minimize power consumption and can be configured by the user as needed.

Finger Heart Rate, SpO₂ Algorithm (Version A)

The MAX32664 Version A communicates with the MAX30101/MAX30102 via I^2C to perform finger-based heart rate and blood oxygen saturation (SpO₂) monitoring. The embedded algorithm uses digital filtering, pressure/position compensation, advanced R-wave detection, and automatic gain control to determine the heart rate in beats per minute while minimizing power. Also, the Maxim Integrated sensor hardware has built-in ambient light rejection to minimize background noise. SpO2 results are reported as percentage of hemoglobin that is saturated with oxygen. The calibration values for SpO₂ configuration should be determined prior to deploying the end product. Use of an accelerometer is recommended to detect and compensate for the artifacts of motion on the algorithm.

Wrist Heart Rate Algorithm (Version B)

The MAX32664 Version B communicates with the MAX86140/MAX86141 via SPI to perform wrist-based heart rate measurements. The embedded algorithm uses digital filtering, distance/motion compensation, and advanced R-wave detection to determine the pulse rate in beats per minute. Power usage is minimized with automatic gain control. In addition, the Maxim Integrated sensor hardware provides additional features such as ambient light rejection, high signal-to-noise (SNR) ratio, and external LEDs for optimal placement. Use of an accelerometer is required to detect and compensate for the artifacts of motion on the algorithm.

Wrist or Ear Heart Rate, SpO₂ Algorithm (Version C)

The MAX32664 Version C communicates with the MAX86141 through SPI or to the MAXM86161 through I^2 C to perform wrist-based or ear-based heart rate and blood oxygen saturation (SpO₂) measurements. The embedded algorithm uses digital filtering, distance/motion compensation, and advanced R-wave detection to determine the pulse rate in beats per minute. Power usage is minimized with automatic gain control. SpO₂ results are reported as a percentage of hemoglobin that is saturated with oxygen. The calibration values for SpO₂ configuration should be determined before deploying the end product. In addition, the Maxim Integrated sensor hardware provides additional features such as ambient light rejection, high signal-to-noise (SNR) ratio, and external LEDs for optimal placement. Use of an accelerometer is required to detect and compensate for the artifacts of motion on the algorithm.

Finger Heart Rate, SpO₂, Blood Pressure Algorithm (Version D)

The MAX32664 Version D communicates with the MAX30101/MAX30102 through I^2C to perform finger-based heart rate, blood oxygen saturation (SpO₂), and blood pressure monitoring. The embedded algorithm uses digital filtering, pressure/position compensation, advanced R-wave detection, and automatic gain control to determine the heart rate in beats per minute while minimizing power. Also, the Maxim Integrated sensor hardware has built-in ambient light rejection to minimize background noise. SpO₂ results are reported as percentage of hemoglobin that is saturated with oxygen. The calibration values for SpO₂ configuration should be determined before deploying the end product. Estimated blood pressure is reported for systolic and diastolic blood pressure. Blood pressure cuff measurements are used to set the blood pressure calibration data in the firmware. An accelerator is not required by the algorithm.

Algorithm Selection and Evaluation

During early stages of algorithm selection and evaluation, a user may wish to experiment with different versions of

Ultra-Low Power Biometric Sensor Hub

the MAX32664. To facilitate this, the MAX32664 Version Z was created. The MAX32664 Version Z contains only the bootloader and a Z encryption key. The Version Z encryption key is used as a generic key that allows multiple, Maxim supplied, algorithms to be accepted by the bootloader (not at the same time). For example, various Maxim evaluation kits use the MAX32664 Version Z. This allows any of the versions of algorithm to be evaluated. In order to do this, a special version of the algorithms must be obtained from Maxim (Version A, B, C, or D algorithm with Z encryption key). Furthermore, it must be noted that the sensor interface/device pinout may be different between various algorithm versions, such as I²C vs. SPI. The MAX32664 Version Z is not intended for mass production.

Each production version (A,B,C,D) has its own bootloader with encryption and an initial preprogrammed version of the firmware. If the user determines that performance of the initial preprogrammed firmware is not sufficient for their application, they can upgrade the firmware by going to the MAX32664 Maxim webpage (<u>https://www.maximintegrated.com/en/products/sensors/MAX32664.html</u>) to obtain the latest version of the firmware.

Interface to Host

The interface to the host is the l^2C interface The devices support one slave interface with an address of 0x55. The following features for this interface are as follows:

- One slave for communication with a host
- RESTART condition
- Fast mode: 400kbps
- Internal filter to reject noise spikes
- Receiver FIFO depth of 8 bytes
- Transmitter FIFO depth of 8 bytes
- Firmware bootloader

Interface to the Sensors

The interface to the sensors is either a master SPI or a fast-mode I²C. Pullup resistors are required for the I²C.

Device Selection

Refer to the Ordering Information at the end of this data sheet for interface type device selection.

Applications Information

Evaluation Platforms

The actual device (IC) used in the evaluation platforms may be the MAX32664 Version Z pre-programmed with the corresponding algorithm. Refer to the Algorithm Selection and Evaluation for additional information.

Table 1. Evaluation Platforms

DEVICE	PLATFORM
MAX32664 Version A and Version D	MAXREFDES220#
MAX32664 Version B	MAXREFDES101#
MAX32664 Version C	MAXREFDES103#

Typical Application Circuits

MAX32664 VERSION A FINGER-BASED HEART RATE AND ${\rm SpO}_2$ MONITOR I^2C INTERFACE TO SENSORS

Typical Application Circuits (continued)

MAX32664 VERSION B WRIST-BASED HEART RATE MONITOR SPI INTERFACE TO SENSORS

Typical Application Circuits (continued)

MAX32664 VERSION C EAR-BASED HEART RATE AND ${\rm SpO}_2$ MONITOR I^2C INTERFACE TO SENSORS

Typical Application Circuits (continued)

MAX32664 VERSION C WRIST-BASED HEART RATE AND SpO_2 MONITOR SPI INTERFACE TO SENSORS

Typical Application Circuits (continued)

MAX32664 VERSION D FINGER-BASED HEART RATE, SpO2, BLOOD PRESSURE MONITOR I²C INTERFACE TO SENSORS

Ultra-Low Power Biometric Sensor Hub

Ordering Information

PART	VERSION	SENSOR INTERFACE	COMPATIBLE SENSORS	PIN-PACKAGE
MAX32664GWEA+	A	I ² C	MAX30101	16 WLP (1.6mm x 1.6mm x 0.65mm, 0.35mm pitch)
MAX32664GWEA+T	А	l ² C	MAX30101	16 WLP (1.6mm x 1.6mm x 0.65mm, 0.35mm pitch)
MAX32664GWEB+	В	SPI	MAX86140/ 141	16 WLP (1.6mm x 1.6mm x 0.65mm, 0.35mm pitch)
MAX32664GWEB+T	В	SPI	MAX86140/ 141	16 WLP (1.6mm x 1.6mm x 0.65mm, 0.35mm pitch)
MAX32664GWEC+	С	SPI/I ² C	MAX86140/ 141, MAXM86161	16 WLP (1.6mm x 1.6mm x 0.65mm, 0.35mm pitch)
MAX32664GWEC+T	С	SPI/I ² C	MAX86140/ 141, MAXM86161	16 WLP (1.6mm x 1.6mm x 0.65mm, 0.35mm pitch)
MAX32664GWED+	D	l ² C	MAX30101/ 102	16 WLP (1.6mm x 1.6mm x 0.65mm, 0.35mm pitch)
MAX32664GWED+T	D	I ² C	MAX30101/ 102	16 WLP (1.6mm x 1.6mm x 0.65mm, 0.35mm pitch)
MAX32664GTGA+	A	I ² C	MAX30101/ 102	24 TQFN-EP (3mm x 3mm x 0.75mm, 0.5mm pitch)
MAX32664GTGA+T	A	l ² C	MAX30101/ 102	24 TQFN-EP (3mm x 3mm x 0.75mm, 0.5mm pitch)
MAX32664GTGB+	В	SPI	MAX86140/ 141	24 TQFN-EP (3mm x 3mm x 0.75mm, 0.5mm pitch)
MAX32664GTGB+T	В	SPI	MAX86140/ 141	24 TQFN-EP (3mm x 3mm x 0.75mm, 0.5mm pitch)

Ultra-Low Power Biometric Sensor Hub

MAX32664GTGC+	С	SPI/I ² C	MAX86140/ 141, MAXM86161	24 TQFN-EP (3mm x 3mm x 0.75mm, 0.5mm pitch)
MAX32664GTGC+T	С	SPI/I ² C	MAX86140/ 141, MAXM86161	24 TQFN-EP (3mm x 3mm x 0.75mm, 0.5mm pitch)
MAX32664GTGD+	D	I ² C	MAX30101/ 102	24 TQFN-EP (3mm x 3mm x 0.75mm, 0.5mm pitch)
MAX32664GTGD+T	D	I ² C	MAX30101/ 102	24 TQFN-EP (3mm x 3mm x 0.75mm, 0.5mm pitch)
MAX32664GWEZ+	Z	_	_	16 WLP (1.6mm x 1.6mm x 0.65mm, 0.35mm pitch)
MAX32664GTGZ+	Z	_	_	24 TQFN-EP (3mm x 3mm x 0.75mm, 0.5mm pitch)

+Denotes a lead(Pb)-free/RoHS-compliant package.

T = Tape and reel. Full reel.

Ultra-Low Power Biometric Sensor Hub

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	4/18	Initial release	—
1	2/19	Revised entire data sheet	1–13
2	5/19	Updated General Description, Benefits and Features, Simplified Block Diagram, Pin Configurations, Pin Descriptions, Wrist Heart Rate SpO2 Algorithm (Version C), Finger Heart Rate SpO2 Blood Pressure Algorithm (Version D), Algorithm Selection and Evaluation, Typical Application Circuits, and Ordering Information sections	1, 2, 7–10, 14–16
3	4/20	Updated General Description, Benefits and Features, Absolute Maximum Ratings, Electrical Characteristics, Electrical Characteristics— l^2 C, Pin Description, Finger Heart Rate, SpO ₂ (Version A), Wrist Heart Rate (Version B), Wrist or Ear Heart Rate, SpO ₂ Algorithm (Version C), Finger Heart Rate, SpO ₂ , Blood Pressure Algorithm (Version D), Interface to Host, and Ordering Information	1, 7–9, 12–21, 27, 28

For pricing, delivery, and ordering information, please visit Maxim Integrated's online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.