

RoHS Qxx12xHx Series

ittelfuse

Expertise Applied | Answers Delivered

Agency Approval				
Agency	Agency File Number			
JR ®	L Package: E71639			

Main Features						
Symbol	Value	Unit				
I _{T(RMS)}	12	A				
V _{DRM} /V _{RRM}	400 to 1000	V				
I _{GT (Q1)}	10 to 50	mA				

Schematic Symbol

Description

12 Amp bi-directional solid state switch series is designed for AC switching and phase control applications such as motor speed and temperature modulation controls, lighting controls, and static switching relays.

Alternistor type devices only operate in quadrants I, II, & III and are used in circuits requiring high dv/dt capability.

Features & Benefits

- RoHS Compliant
- Glass passivated junctions
- Voltage capability up to 1000 V
- Surge capability up to 120 A
- Electrically isolated "L-Package" is UL recognized for 2500Vrms
- Solid-state switching eliminates arcing or

contact bounce that create voltage transients

- No contacts to wear out from reaction of switching events
- Restricted (or limited) RFI generation, depending on activation point sine wave
- Requires only a small gate activation pulse in each half-cycle

Applications

Excellent for AC switching and phase control applications such as heating, lighting, and motor speed controls.

Typical applications are AC solid-state switches, light dimmers, power tools, lawn care equipment, home/brown goods and white goods appliances.

Alternistor Triacs (no snubber required) are used in applications with extremely inductive loads requiring highest commutation performance.

Internally constructed isolated packages are offered for ease of heat sinking with highest isolation voltage.

R

Symbol	Paramete	er		Value	Unit
1	RMS on-state current (full sine wave)	Qxx12LHy	$T_c = 90^{\circ}C$	12	А
T(RMS)		Qxx12RHy Qxx12NHy	$T_c = 105^{\circ}C$	١٢	A
1	Non repetitive surge peak on-state current	f = 50 Hz	t = 20 ms	110	А
TSM	(full cycle, T_J initial = 25°C) $f = 60 \text{ Hz}$	f = 60 Hz	t = 16.7 ms	120	A
l²t	I²t Value for fusing	·	t _p = 8.3 ms	60	A²s
di/dt	Critical rate of rise of on-state current	f = 120 Hz	T _J = 125°C	70	A/µs
I _{GTM}	Peak gate trigger current	t _p ≤ 10 µs; I _{GT} ≤ I _{GTM}	T _J = 125°C	2.0	А
P _{G(AV)}	Average gate power dissipation T _J = 125°C			0.5	W
T _{stg}	Storage temperature range			-40 to 150	°C
T,	Operating junction temperature range			-40 to 125	°C

Note: xx = voltage, y = sensitivity

Electrical Characteristics (T_J = 25°C, unless otherwise specified) — **Alternistor Triac** (3 Quadrants)

Symbol	Test Conditions	Quadi	rant	Qxx12xH2	Qxx12xH5	Unit
I _{gt}	$V_{1} = 12V_{1}P_{2} = 60.0$	- -	MAX.	10	50	mA
V _{gt}	$V_{\rm D} = 12 V R_{\rm L} = 60 \Omega$	- -	MAX.	1.3	1.3	V
V _{gd}	$V_{\rm D} = V_{\rm DRM} R_{\rm L} = 3.3 \text{ k}\Omega \text{ T}_{\rm J} = 125^{\circ}\text{C}$	- -	MIN.	0.2	0.2	V
I _H	I _T = 100mA		MAX.	15	50	mA
		400V		300	750	
du (dt	$V_{\rm D} = V_{\rm DRM}$ Gate Open T _J = 125°C	600V		200	650	1
dv/dt		800V	- MIN.	150	500	V/µs
	$V_{\rm D} = V_{\rm DRM}$ Gate Open $T_{\rm J} = 100^{\circ}{\rm C}$	1000V		150	300	
(dv/dt)c	$(di/dt)c = 6.5 \text{ A/ms } T_{J} = 125^{\circ}\text{C}$		MIN.	2	30	V/µs
t _{gt}	$I_{g} = 2 \times I_{gT}$ PW = 15µs $I_{T} = 17.0$ A(pk)	TYP.	4	4	μs

Static Characteristics

Symbol	Test Conditions					Unit
V _{TM}	$I_{_{TM}} = 17.0 \text{A} \text{ t}_{_{p}} = 380 \ \mu \text{s}$			MAX.	1.60	V
	$T_J = 25^{\circ}C$	400-1000V		10	μΑ	
DRM	$V_{\rm D} = V_{\rm DRM} / V_{\rm RRM}$	T _J = 125°C	400-800V	MAX.	2	0
RRM		T _J = 100°C	1000V		3	mA

Thermal Resistances

Symbol	Parameter		Value	Unit
R _{θ(J-C)}	Junction to case (AC)	Qxx12RHy Qxx12NHy	1.2	°C/W
0(0-0)		Qxx12LHy	2.3	
D	Junction to ambient (AC)	Qxx12RHy	45	°C/W
R _{θ(J-A)}	Sunction to amblent (AC)	Qxx12LHy	90	C/VV

Note: xx = voltage, y = sensitivity

Figure 1: Definition of Quadrants

Note: Alternistors will not operate in QIV

Figure 3: Normalized DC Holding Current vs. Junction Temperature

Figure 5: Power Dissipation (Typical) vs. RMS On-State Current

Figure 2: Normalized DC Gate Trigger Current for All Quadrants vs. Junction Temperature

Figure 4: Normalized DC Gate Trigger Voltage for All Quadrants vs. Junction Temperature

©2008 Littelfuse, Inc. Specifications are subject to change with

Specifications are subject to change without notice. Please refer to http://www.littelfuse.com for current information.

Teccor[®] brand Thyristors 12 Amp Alternistor (High Communitation) Triacs

Figure 7: Maximum Allowable Ambient Temperature vs. On-State Current

Figure 8: On-State Current vs. On-State Voltage (Typical)

Figure 9: Surge Peak On-State Current vs. Number of Cycles

Supply Frequency: 60Hz Sinusoidal Load: Resistive RMS On-State Current [I _{TRMS}: Maximum] Rated Value at Specific Case Temperature

Notes:

- 1. Gate control may be lost during and immediately following surge current interval.
- 2. Overload may not be repeated until junction temperature has returned to steady-state rated value.

Soldering Parameters

Reflow Condition		Pb – Free assembly
	-Temperature Min (T _{s(min)})	150°C
Pre Heat	-Temperature Max (T _{s(max)})	200°C
	-Time (min to max) (t _s)	60 – 180 secs
Average ramp up rate (LiquidusTemp) (T_L) to peak		5°C/second max
$T_{S(max)}$ to T_{L} - Ramp-up Rate		5°C/second max
Reflow	-Temperature (T _L) (Liquidus)	217°C
nellow	-Time (min to max) (t _s)	60 – 150 seconds
PeakTemp	erature (T _P)	260 ^{+0/5°} C
Time within 5°C of actual peak Temperature (t _p)		20 – 40 seconds
Ramp-down Rate		5°C/second max
Time 25°C	to peakTemperature (T _P)	8 minutes Max.
Do not exc	ceed	280°C

Physical Specifications

Terminal Finish	100% Matte Tin-plated
Body Material	UL recognized epoxy meeting flammability classification 94V-0
Terminal Material	Copper Alloy

Design Considerations

Careful selection of the correct device for the application's operating parameters and environment will go a long way toward extending the operating life of the Thyristor. Good design practice should limit the maximum continuous current through the main terminals to 75% of the device rating. Other ways to ensure long life for a power discrete semiconductor are proper heat sinking and selection of voltage ratings for worst case conditions. Overheating, overvoltage (including dv/dt), and surge currents are the main killers of semiconductors. Correct mounting, soldering, and forming of the leads also help protect against component damage.

Environmental Specifications

Test	Specifications and Conditions
AC Blocking	MIL-STD-750, M-1040, Cond A Applied Peak AC voltage @ 125°C for 1008 hours
Temperature Cycling	MIL-STD-750, M-1051, 100 cycles; -40°C to +150°C; 15-min dwell time
Temperature/ Humidity	EIA / JEDEC, JESD22-A101 1008 hours; 320V - DC: 85°C; 85% rel humidity
High Temp Storage	MIL-STD-750, M-1031, 1008 hours; 150°C
Low-Temp Storage	1008 hours; -40°C
Thermal Shock	MIL-STD-750, M-1056 10 cycles; 0°C to 100°C; 5-min dwell time at each temperature; 10 sec (max) transfer time between temperature
Autoclave	EIA / JEDEC, JESD22-A102 168 hours (121°C at 2 ATMs) and 100% R/H
Resistance to Solder Heat	MIL-STD-750 Method 2031
Solderability	ANSI/J-STD-002, category 3, Test A
Lead Bend	MIL-STD-750, M-2036 Cond E

Teccor® brand Thyristors 12 Amp Alternistor (High Communitation) Triacs

Dimensions – TO-220AB (R-Package) – Non-Isolated Mounting Tab Common with Center Lead

Dimension	Incl	nes	Millim	neters
DIMENSION	Min	Max	Min	Max
А	0.380	0.420	9.65	10.67
В	0.105	0.115	2.67	2.92
С	0.230	0.250	5.84	6.35
D	0.590	0.620	14.99	15.75
E	0.142	0.147	3.61	3.73
F	0.110	0.130	2.79	3.30
G	0.540	0.575	13.72	14.61
Н	0.025	0.035	0.64	0.89
J	0.195	0.205	4.95	5.21
K	0.095	0.105	2.41	2.67
L	0.060	0.075	1.52	1.91
Μ	0.085	0.095	2.16	2.41
Ν	0.018	0.024	0.46	0.61
0	0.178	0.188	4.52	4.78
Р	0.045	0.060	1.14	1.52
R	0.038	0.048	0.97	1.22

Dimensions - TO-220AB (L-Package) - Isolated Mounting Tab

AREA (REF.) 0.17 IN²

Note: Maximum torque to be applied to mounting tab is 8 in-lbs. (0.904 Nm).

Dimension	Inc	hes	Millim	neters
Dimension	Min	Max	Min	Max
А	0.380	0.420	9.65	10.67
В	0.105	0.115	2.67	2.92
С	0.230	0.250	5.84	6.35
D	0.590	0.620	14.99	15.75
E	0.142	0.147	3.61	3.73
F	0.110	0.130	2.79	3.30
G	0.540	0.575	13.72	14.61
Н	0.025	0.035	0.64	0.89
J	0.195	0.205	4.95	5.21
К	0.095	0.105	2.41	2.67
L	0.060	0.075	1.52	1.91
М	0.085	0.095	2.16	2.41
Ν	0.018	0.024	0.46	0.61
0	0.178	0.188	4.52	4.78
Р	0.045	0.060	1.14	1.52
R	0.038	0.048	0.97	1.22

Teccor[®] brand Thyristors

[8.41] [7.01]

12 Amp Alternistor (High Communitation) Triacs

Dimensions – TO-263AB (N-Package) – D²Pak Surface Mount

. F

AREA: 0.11 IN2.

F

[8.13] .320

Ħ

Dimension	Incl	nes	Millim	neters
Dimension	Min	Max	Min	Max
А	0.360	0.370	9.14	9.40
В	0.380	0.420	9.65	10.67
С	0.178	0.188	4.52	4.78
D	0.025	0.035	0.64	0.89
E	0.045	0.060	1.14	1.52
F	0.060	0.075	1.52	1.91
G	0.095	0.105	2.41	2.67
Н	0.092	0.102	2.34	2.59
J	0.018	0.024	0.46	0.61
К	0.090	0.110	2.29	2.79
S	0.590	0.625	14.99	15.88
V	0.035	0.045	0.89	1.14
U	0.002	0.010	0.05	0.25
W	0.040	0.070	1.02	1.78

12.0 A TRIACs

Product Selector Gate Sensitivity Quadrants Voltage Part Number Package Type 400V 600V 800V 1000V 1 - 11 - 111Qxx12LH2 Х Х Х 10 mA Alternistor Triac TO-220L Qxx12RH2 Х Х Х 10 mA Alternistor Triac TO-220R Qxx12NH2 Х Х Х 10 mA Alternistor Triac TO-263 D²-PAK Qxx12LH5 Х Х Х 50 mA Alternistor Triac TO-220L Х Qxx12RH5 Х Х Х Х 50 mA Alternistor Triac TO-220R Qxx12NH5 Х Х Х Х 50 mA Alternistor Triac TO-263 D2-PAK

Packing Options

Part Number	Marking	Weight	Packing Mode	Base Quantity
Qxx12L/RHy	Qxx12L/RHy	2.2 g	Bulk	500
Qxx12L/RHyTP	Qxx12L/RHy	2.2 g	Tube Pack	500
Qxx12NHyTP	Qxx12NHy	1.6 g	Tube	500
Qxx12NHyRP	Qxx12NHy	1.6 g	Embossed Carrier	500

Note: xx = Voltage; y = Sensitivity

