¹⁾ With a di/dt of 50 A/ μ s.

Note:

Current Transducer LA 50-S

For the electronic measurement of currents : DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

0640

ind the secondary circuit (electro

CE

Electrical data

I _{PN} I _P R _M	Primary nominal r.m.s. current Primary current, measuring range Measuring resistance		50 0 ± 70 R_{M min} R_{Mmax}		A A	
	with ± 15 V	@ ±	50 A _{max}	50	100	Ω
		@ ±	70 A _{max}	50	70	Ω
I _{sn}	Secondary nominal r.m.	s. curre	nt	50		mA
K _N	Conversion ratio			1:100	0	
V _c	Supply voltage (± 5 %)			± 15		V
I _c	Current consumption			10 + I		mΑ
Ŭ _d	R.m.s. voltage for AC iso	plation t	est, 50 Hz, 1 min	3		kV

Accuracy - Dynamic performance data

X _G	Overall accuracy @ $\mathbf{I}_{PN,} \mathbf{T}_{A} = 25^{\circ}C$ Linearity error		± 0.5 < 0.1		% %
I _о I _{от}	Offset current @ $I_p = 0$, $T_A = 25^{\circ}C$ Thermal drift of I_o	- 10°C + 70°C	Тур ± 0.3	Max ± 0.2 ± 0.6	mA mA
t _, di/dt f	Response time ¹⁾ @ 90 % of I _{PN} di/dt accurately followed Frequency bandwidth (- 1 dB)		< 1 > 50 DC 1	150	μs A/μs kHz

General data

T _A	Ambient operating temperature	- 10 + 70	°C
T _s	Ambient storage temperature	- 25 + 85	°°
R _s	Secondary coil resistance @ $T_A = 70^{\circ}C$	90	Ω
m	Mass	45	g
	Standards	EN 50178 : 1997	

Features

- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Dimensions LA 50-S (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Transducer fastening

Recommended fastening torque

- Primary through-hole
- Connection of secondary

±	0.2 m	m		
2	holes	Ø	3.2	mm
2	M3 st	eel	scr	ews

1.1 Nm or 0.81 Lb.-Ft. 12.7 x 6.35 mm Molex 5045-04/AG

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
 Temperature of the primary conductor should not exceed 100°C.
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.
- In order to achieve the best magnetic coupling, the primary windings have to be wound over the top edge of the device.
- To measure nominal currents of less than 50 A, the optimum accuracy is obtained by having several primary turns (nominal current x number of turns < 50 At).

LEM reserves the right to carry out modifications on its transducers, in order to improve them, without previous notice.