# 64-PIN CK505 W/FULLY INTEGRATED VOLTAGE REGULATOR

## **Recommended Application:**

CK505 compliant clock with fully integrated voltage regulator, PCIe Gen 1 compliant

## **Output Features:**

- 2 CPU differential low power push-pull pairs
- 10 SRC differential low power push-pull pairs
- 1 CPU/SRC selectable differential low power push-pull pair
- 1 SRC/DOT selectable differential low power push-pull pair
- 5 PCI, 33MHz
- 1 PCI\_F, 33MHz free running
- 1 USB, 48MHz
- 1 REF. 14.318MHz

## Table 1: CPU Frequency Select Table

### FS<sub>L</sub>C<sup>2</sup> FS<sub>L</sub>B<sup>1</sup> FS<sub>L</sub>A<sup>1</sup> CPU SBC PCI REF USB B0b7 B0b6 B0b5 MHz MHz MHz MHz MHz

| 0 | 0 | 0 | 266.66 |        |        |        |       |       |
|---|---|---|--------|--------|--------|--------|-------|-------|
| 0 | 0 | 1 | 133.33 |        |        |        |       |       |
| 0 | 1 | 0 | 200.00 |        |        |        |       |       |
| 0 | 1 | 1 | 166.66 | 100.00 | 33.33  | 14.318 | 48.00 | 96.00 |
| 1 | 0 | 0 | 333.33 |        |        |        |       |       |
| 1 | 0 | 1 | 100.00 |        |        |        |       |       |
| 1 | 1 | 0 | 400.00 |        |        |        |       |       |
| 1 | 1 | 1 |        |        | Reserv | /ed    |       |       |

1. FSLA and FSLB are low-threshold inputs.Please see  $V_{IL_{LFS}}$  and  $V_{IH_{ES}}$  specifications in the Input/Supply/Common Output Parameters Table for correct values. Also refer to the Test Clarification Table.

2. FS\_C is a three-level input. Please see the  $V_{\rm IL\_FS}$  and  $V_{\rm IH\_FS}$ 

specifications in the Input/Supply/Common Output Parameters Table for correct values.

## **Key Specifications:**

- CPU outputs cycle-cycle jitter < 85ps
- SRC output cycle-cycle jitter < 125ps
- PCI outputs cycle-cycle jitter < 250ps .
- +/- 100ppm frequency accuracy on CPU & SRC clocks

## Features/Benefits:

Pin Configuration

DOT

MHz

- Does not require external pass transistor for voltage regulator
- Supports spread spectrum modulation, default is 0.5% down spread
- Uses external 14.318MHz crystal, external crystal • load caps are required for frequency tuning
- One differential push-pull pair selectable between • SRC and two single-ended outputs

| Johngaradie    |              |              |                       |
|----------------|--------------|--------------|-----------------------|
| PCI0/CR#_A     | 1            |              | 64 SCLK               |
| VDDPCI         | 2            |              | 63 SDATA              |
| PCI1/CR#_B     | 3            |              | 62 REF0/FSLC/TEST_SEL |
| PCI2/TME       | 4            |              | 61 VDDREF             |
| PCI3           | 5            |              | 60 X1                 |
| PCI4/SRC5_EN   | 6            |              | 59 X2                 |
| PCI_F5/ITP_EN  | 7            |              | 58 GNDREF             |
| GNDPCI         | 8            |              | 57 FSLB/TEST_MODE     |
| VDD48          | 9            |              | 56 CK_PWRGD/PD#       |
| USB_48MHz/FSLA | 10           |              | 55 VDDCPU             |
| GND48          | 11           |              | 54 CPUT0              |
| VDD96_IO       | 12           |              | 53 CPUC0              |
| DOTT_96/SRCT0  |              |              | 52 GNDCPU             |
| DOTC_96/SRCC0  |              |              | 51 CPUT1_F            |
| GND            |              | 2            | 50 CPUC1_F            |
| VDD            | -            | 9LPR501      | 49 VDDCPU_IO          |
| SRCT1/SE1      |              | Ē.           | 48 NC                 |
| SRCC1/SE2      | 18           | 6            | 47 CPUT2_ITP/SRCT8    |
| GND            | 19           |              | 46 CPUC2_ITP/SRCC8    |
| VDDPLL3_IO     | 20           |              | 45 VDDSRC_IO          |
| SRCT2/SATAT    |              |              | 44 SRCT7/CR#_F        |
| SRCC2/SATAC    |              |              | 43 SRCC7/CR#_E        |
| GNDSRC         | 23           |              | 42 GNDSRC             |
| SRCT3/CR#_C    | 24           |              | 41 SRCT6              |
| SRCC3/CR#_D    |              |              | 40 SRCC6              |
| VDDSRC_IO      | 26           |              | 39 VDDSRC             |
| SRCT4          |              |              | 38 PCI_STOP#/SRCT5    |
| SRCC4          |              |              | 37 CPU_STOP#/SRCC5    |
| GNDSRC         |              |              | 36 VDDSRC_IO          |
| SRCT9          |              |              | 35 SRCC10             |
| SRCC9          |              |              | 34 SRCT10             |
| SRCC11/CR#_G   |              |              | 33 SRCT11/CR#_H       |
|                | •            | 1 TSSOP      |                       |
|                | * Internal D | ull In Dooig | tor                   |

\* Internal Pull-Up Resistor

\*\* Internal Pull-Down Resistor

IDT<sup>™</sup>/ICS<sup>™</sup> 64-pin CK505 w/Fully Integrated Voltage Regulator

1118N-05/19/11



ICS9LPR501

## **Pin Description**

| PIN # | PIN NAME       | TYPE | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------|----------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1     | PCI0/CR#_A     | I/O  | <ul> <li>3.3V PCI clock output or Clock Request control A for either SRC0 or SRC2 pair</li> <li>The power-up default is PCI0 output, but this pin may also be used as a Clock Request control of SRC pair 0 or SRC pair 2 via SMBus. Before configuring this pin as a Clock Request Pin, the PCI output must first be disabled in byte 2, bit 0 of SMBus address space . After the PCI output is disabled (high-Z), the pin can then be set to serve as a Clock Request pin for either SRC pair 2 or pair 0 using the CR#_A_EN bit located in byte 5 of SMBUs address space. Byte 5, bit 7</li> <li>0 = PCI0 enabled (default)</li> <li>1 = CR#_A enabled. Byte 5, bit 6 controls whether CR#_A controls SRC0 or SRC2 pair Byte 5, bit 6</li> <li>0 = CR#_A controls SRC0 pair (default),</li> <li>1 = CR#_A controls SRC0 pair</li> </ul> |
| 2     | VDDPCI         | PWR  | Power supply pin for the PCI outputs, 3.3V nominal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3     | PCI1/CR#_B     | I/O  | <ul> <li>3.3V PCI clock output/Clock Request control B for either SRC1 or SRC4 pair</li> <li>The power-up default is PCI1 output, but this pin may also be used as a Clock Request control of SRC pair 1 or SRC pair 4 via SMBus. Before configuring this pin as a Clock Request Pin, the PCI output must first be disabled in byte 2, bit 1 of SMBus address space . After the PCI output is disabled (high-Z), the pin can then be set to serve as a Clock Request pin for either SRC pair 1 or pair 4 using the CR#_B_EN bit located in byte 5 of SMBUs address space. Byte 5, bit 5</li> <li>0 = PCI1 enabled (default)</li> <li>1 = CR#_B enabled. Byte 5, bit 6 controls whether CR#_B controls SRC1 or SRC4 pair Byte 5, bit 4</li> <li>0 = CR#_B controls SRC1 pair (default)</li> <li>1 = CR#_B controls SRC4 pair</li> </ul>     |
| 4     | PCI2/TME       | I/O  | <ul> <li>3.3V PCI clock output / Trusted Mode Enable (TME) Latched Input. This pin is sampled on power-up as follows</li> <li>0 = Overclocking of CPU and SRC Allowed</li> <li>1 = Overclocking of CPU and SRC <u>NOT</u> allowed</li> <li>After being sampled on power-up, this pin becomes a 3.3V PCI Output</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 5     | PCI3           | OUT  | 3.3V PCI clock output.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 6     | PCI4/SRC5_EN   | I/O  | 3.3V PCI clock output / SRC5 pair or PCI_STOP#/CPU_STOP# enable strap. On powerup, the logic value on this pin determines if the SRC5 pair is enabled or if CPU_STOP#/PCI_STOP# is enabled (pins 37 and 38). The latched value controls the pin function on pins 37 and 38 as follows<br>0 = PCI_STOP#/CPU_STOP#<br>1 = SRC5/SRC5#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 7     | PCI_F5/ITP_EN  | I/O  | Free running PCI clock output and ITP/SRC8 enable strap. This output is not affected by the state of the PCI_STOP# pin. On powerup, the state of this pin determines whether pins 38 and 39 are an ITP or SRC pair.<br>0 =SRC8/SRC8#<br>1 = ITP/ITP#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 8     | GNDPCI         | PWR  | Ground for PCI clocks.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 9     | VDD48          | PWR  | Power supply for USB clock, nominal 3.3V.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 10    | USB_48MHz/FSLA | I/O  | Fixed 48MHz USB clock output. 3.3V./ 3.3V tolerant input for CPU frequency selection. Refer to input electrical characteristics for Vil_FS and Vih_FS values.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 11    | GND48          | PWR  | Ground pin for the 48MHz outputs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 12    | VDD96_IO       | PWR  | Power supply for DOT96 outputs, VDD96_IO is 1.05 to 3.3V with +/-5% tolerance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 13    | DOTT_96/SRCT0  | OUT  | True clock of SRC or DOT96. The power-up default function is SRC0. After powerup, this pin function may be changed to DOT96 via SMBus Byte 1, bit 7 as follows:<br>0= SRC0<br>1=DOT96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 14    | DOTC_96/SRCC0  | OUT  | Complement clock of SRC or DOT96. The power-up default function is SRC0#. After powerup, this pin function may be changed to DOT96# via SMBus Byte 1, bit 7 as follows 0= SRC0#<br>1=DOT96#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4.5   | GND            | PWR  | Ground pin for the DOT96 clocks.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 15    |                |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

## Pin Description (continued)

| PIN # | PIN NAME     | TYPE | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------|--------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 17    | SRCT1/SE1    | OUT  | True clock of differential SRC1 clock pair / 3.3V single-ended output. The powerup default is 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       |              |      | MHz SRC, -0.5% downspread. The pin function may be changed via SMBus B1b[4:1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 18    | SRCC1/SE2    | OUT  | Complement clock of differential SRC1 clock pair / 3.3V single-ended output. The powerup default is 100 MHz SRC, -0.5% downspread. The pin function may be changed via SMBus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 10    |              | 001  | B1b[4:1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 19    | GND          | PWR  | Ground pin for SRC / SE1 and SE2 clocks, PLL3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 20    | VDDPLL3_IO   | PWR  | Power supply for PLL3 output. VDDPLL3_IO is 1.05 to 3.3V with +/-5% tolerance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 21    | SRCT2/SATAT  | OUT  | True clock of differential SRC/SATA clock pair.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 22    | SRCC2/SATAC  | OUT  | Complement clock of differential SRC/SATA clock pair.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 23    | GNDSRC       | PWR  | Ground pin for SRC clocks.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 24    | SRCT3/CR#_C  | I/O  | True clock of differential SRC clock pair/ Clock Request control C for either SRC0 or SRC2 pair<br>The power-up default is SRCCLK3 output, but this pin may also be used as a Clock Request<br>control of SRC pair 0 or SRC pair 2 via SMBus. Before configuring this pin as a Clock Request<br>Pin, the SRC3 output must first be disabled in byte 4, bit 7 of SMBus address space . After the<br>SRC3 output is disabled, the pin can then be set to serve as a Clock Request pin for either SRC<br>pair 2 or pair 0 using the CR#_C_EN bit located in byte 5 of SMBUs address space.<br>Byte 5, bit 3<br>0 = SRC3 enabled (default)<br>1 = CR#_C enabled. Byte 5, bit 2 controls whether CR#_C controls SRC0 or SRC2 pair<br>Byte 5, bit 2<br>0 = CR#_C controls SRC0 pair (default),<br>1 = CR#_C controls SRC0 pair (default),  |
| 25    | SRCC3/CR#_D  | I/O  | Complementary clock of differential SRC clock pair/ Clock Request control D for either SRC1<br>or SRC4 pair<br>The power-up default is SRCCLK3 output, but this pin may also be used as a Clock Request<br>control of SRC pair 1 or SRC pair 4 via SMBus. Before configuring this pin as a Clock Request<br>Pin, the SRC3 output must first be disabled in byte 4, bit 7 of SMBus address space . After the<br>SRC3 output is disabled, the pin can then be set to serve as a Clock Request pin for either SRC<br>pair 1 or pair 4 using the CR#_D_EN bit located in byte 5 of SMBUs address space.<br>Byte 5, bit 1<br>0 = SRC3 enabled (default)<br>1 = CR#_D enabled. Byte 5, bit 0 controls whether CR#_D controls SRC1 or SRC4 pair<br>Byte 5, bit 0<br>0 = CR#_D controls SRC1 pair (default),<br>1 = CR#_D controls SRC4 pair |
| 26    | VDDSRC_IO    | PWR  | Power supply for SRC clocks. VDDSRC_IO is 1.05 to 3.3V with +/-5% tolerance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 27    | SRCT4        | I/O  | True clock of differential SRC clock pair 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 28    | SRCC4        | I/O  | Complement clock of differential SRC clock pair 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 29    | GNDSRC       | PWR  | Ground pin for SRC clocks.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 30    | SRCT9        | OUT  | True clock of differential SRC clock pair.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 31    | SRCC9        | OUT  | Complement clock of differential SRC clock pair.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 32    | SRCC11/CR#_G | I/O  | SRC11 complement /Clock Request control for SRC9 pair<br>The power-up default is SRC11#, but this pin may also be used as a Clock Request control of<br>SRC9 via SMBus. Before configuring this pin as a Clock Request Pin, the SRC11 output pair<br>must first be disabled in byte 3, bit 7 of SMBus configuration space After the SRC11 output is<br>disabled (high-Z), the pin can then be set to serve as a Clock Request for SRC9 pair using byte<br>6, bit 5 of SMBus configuration space<br><b>Byte 6, bit 5</b><br>0 = SRC11# enabled (default)<br>1= CR# G controls SRC9                                                                                                                                                                                                                                                    |

## **Pin Description (Continued)**

| PIN # | PIN NAME        | TYPE | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------|-----------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 33    | SRCT11/CR#_H    | I/O  | SRC11 true or Clock Request control H for SRC10 pair<br>The power-up default is SRC11, but this pin may also be used as a Clock Request control of<br>SRC10 via SMBus. Before configuring this pin as a Clock Request Pin, the SRC11 output pair<br>must first be disabled in byte 3 bit 7 of SMBus configuration space After the SRC11 output is<br>disabled (high-Z), the pin can then be set to serve as a Clock Request for SRC10 pair using<br>byte 6, bit 4 of SMBus configuration space<br>Byte 6, bit 4<br>0 = SRC11 enabled (default)<br>1 = CR#_H controls SRC10.         |
| 34    | SRCT10          | OUT  | True clock of differential SRC clock pair.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 35    | SRCC10          | OUT  | Cpmplement clock of differential SRC clock pair.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 36    | VDDSRC_IO       | PWR  | Power supply for SRC outputs. VDDSRC_IO is 1.05 to 3.3V with +/-5% tolerance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 37    | CPU_STOP#/SRCC5 | I/O  | Stops all CPU Clocks, except those set to be free running clocks /<br>Complement clock of differential SRC pair. The function of this pin is set up by the power-up<br>strap on pin 6, PCI4/SRC5_EN. The logic value sampled on pin 6 at power-up sets the function<br>as follows:<br>0= CPU_STOP#<br>1 = SRC5<br>In AMT mode 3 bits are shifted in from the ICH to set the FSC, FSB, FSA values                                                                                                                                                                                    |
| 38    | PCI_STOP#/SRCT5 | I/O  | Stops all PCI Clocks, except those set to be free running clocks /<br>Complement clock of differential SRC pair. The function of this pin is set up by the power-up<br>strap on pin 6, PCI4/SRC5_EN. The logic value sampled on pin 6 at power-up sets the function<br>as follows:<br>0= PCI_STOP#<br>1 = SRC5#<br>In AMT mode, this pin is a clock input which times the FSC, FSB, FSA bits shifted in on pin 37.                                                                                                                                                                  |
| 39    | VDDSRC          | PWR  | VDD pin for SRC internal circuits, 3.3V nominal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 40    | SRCC6           | OUT  | Complement clock of low power differential SRC clock pair.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 41    | SRCT6           | OUT  | True clock of low power differential SRC clock pair.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 42    | GNDSRC          | PWR  | Ground for SRC clocks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 43    | SRCC7/CR#_E     | 1/0  | SRC7 complement or Clock Request control E for SRC6 pair<br>The power-up default is SRC7#, but this pin may also be used as a Clock Request control of<br>SRC6 via SMBus. Before configuring this pin as a Clock Request Pin, the SRC7 output pair<br>must first be disabled in byte 3, bit 3 of SMBus configuration space. After the SRC output is<br>disabled (high-Z), the pin can then be set to serve as a Clock Request for SRC6 pair using byte<br>6, bit 7 of SMBus configuration space<br><b>Byte 6, bit 7</b><br>0 = SRC7# enabled (default)<br>1 = CR# _E controls SRC6. |
| 44    | SRCT7/CR#_F     | 1/0  | SRC7 true or Clock Request control 8 for SRC8 pair<br>The power-up default is SRC7, but this pin may also be used as a Clock Request control of<br>SRC8 via SMBus. Before configuring this pin as a Clock Request Pin, the SRC7 output pair<br>must first be disabled in byte 3, bit 3 of SMBus configuration space After the SRC output is<br>disabled (high-Z), the pin can then be set to serve as a Clock Request for SRC8 pair using byte<br>6, bit 6 of SMBus configuration space<br><b>Byte 6, bit 6</b><br>0 = SRC7# enabled (default)<br>1 = CR#_F controls SRC8.          |
| 45    | VDDSRC_IO       | PWR  | Power supply for SRC outputs. VDDSRC_IO is 1.05 to 3.3V with +/-5% tolerance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 46    | CPUC2_ITP/SRCC8 | OUT  | Complement clock of low power differential CPU2/Complement clock of differential SRC pair.<br>The function of this pin is determined by the latched input value on pin 7, PCIF5/ITP_EN on<br>powerup. The function is as follows:<br>Pin 7 latched input Value<br>0 = SRC8#<br>1 = ITP#                                                                                                                                                                                                                                                                                             |
| 47    | CPUT2_ITP/SRCT8 | OUT  | True clock of low power differential CPU2/True clock of differential SRC pair. The function of this pin is determined by the latched input value on pin 7, PCIF5/ITP_EN on powerup. The function is as follows:<br>Pin 7 latched input Value<br>0 = SRC8                                                                                                                                                                                                                                                                                                                            |
|       |                 |      | 1 = ITP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

## **Pin Description (Continued)**

| PIN # | PIN NAME           | TYPE | DESCRIPTION                                                                                                                                                                                                                                                         |
|-------|--------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 49    | VDDCPU_IO          | PWR  | Supply for CPU outputs. VDDCPU_IO is 1.05 to 3.3V with +/-5% tolerance                                                                                                                                                                                              |
| 50    | CPUC1_F            | OUT  | Complement clock of low power differenatial CPU clock pair. This clock will be free-running<br>during iAMT.                                                                                                                                                         |
| 51    | CPUT1_F            | OUT  | True clock of low power differential CPU clock pair. This clock will be free-running during iAMT.                                                                                                                                                                   |
| 52    | GNDCPU             | PWR  | Ground Pin for CPU Outputs                                                                                                                                                                                                                                          |
| 53    | CPUC0              | OUT  | Complement clock of low power differential CPU clock pair.                                                                                                                                                                                                          |
| 54    | CPUT0              | OUT  | True clock of low power differential CPU clock pair.                                                                                                                                                                                                                |
| 55    | VDDCPU             | PWR  | Power Supply 3.3V nominal.                                                                                                                                                                                                                                          |
| 56    | CK_PWRGD/PD#       | IN   | Notifies CK505 to sample latched inputs, or iAMT entry/exit, or PWRDWN# mode                                                                                                                                                                                        |
| 57    | FSLB/TEST_MODE     | IN   | 3.3V tolerant input for CPU frequency selection. Refer to input electrical characteristics for<br>Vil_FS and Vih_FS values. TEST_MODE is a real time input to select between Hi-Z and REF/N<br>divider mode while in test mode. Refer to Test Clarification Table.  |
| 58    | GNDREF             | PWR  | Ground pin for crystal oscillator circuit                                                                                                                                                                                                                           |
| 59    | X2                 | OUT  | Crystal output, nominally 14.318MHz.                                                                                                                                                                                                                                |
| 60    | X1                 | IN   | Crystal input, Nominally 14.318MHz.                                                                                                                                                                                                                                 |
| 61    | VDDREF             | PWR  | Power pin for the REF outputs, 3.3V nominal.                                                                                                                                                                                                                        |
| 62    | REF0/FSLC/TEST_SEL | I/O  | 3.3V 14.318MHz reference clock/3.3V tolerant low threshold input for CPU frequency selection.<br>Refer to input electrical characteristics for Vil_FS and Vih_FS values/ TEST_SEL: 3-level<br>latched input to enable test mode. Refer to Test Clarification Table. |
| 63    | SDATA              | I/O  | Data pin for SMBus circuitry, 5V tolerant.                                                                                                                                                                                                                          |
| 64    | SCLK               | IN   | Clock pin of SMBus circuitry, 5V tolerant.                                                                                                                                                                                                                          |

## Fully Integrated Regulator Connection for Desktop/Mobile Applications



## **General Description**

**ICS9LPR501** follows Intel CK505 Yellow Cover specification. This clock synthesizer provides a single chip solution for next generation Intel processors and Intel chipsets. **ICS9LPR501** is driven with a 14.318MHz crystal. It also provides a tight ppm accuracy output for Serial ATA and PCI-Express support.

## Functional Block Diagram



## **Power Groups**

| Pin Nu     | mber       | Description |                   |  |  |  |
|------------|------------|-------------|-------------------|--|--|--|
| VDD        | GND        | Description |                   |  |  |  |
| 49         | 52         | CPUCLK      | Low power outputs |  |  |  |
| 55         | 52         | Master C    | lock, Analog      |  |  |  |
| 26, 36, 45 | 23, 29, 42 | SRCCLK      | Low power outputs |  |  |  |
| 39         | 23, 29, 42 | SHOULK      | PLL 1             |  |  |  |
| 20         | 19         | PLL3/SE     | Low power outputs |  |  |  |
| 16         | 19         | FLL3/3E     | PLL 3             |  |  |  |
| 12         | 11         | DOT 96Mhz   | Low power outputs |  |  |  |
| 9          | 11         | USB 48      |                   |  |  |  |
| 61         | 58         | Xtal, REF   |                   |  |  |  |
| 2          | 8          | P           | CICLK             |  |  |  |

IDT<sup>™</sup>/ICS<sup>™</sup> 64-pin CK505 w/Fully Integrated Voltage Regulator

1118N-05/19/11

## Absolute Maximum Ratings - DC Parameters

| Aboolute maximum matinge De                    | i ulullocolo    |                                     |           |     |      |       |       |
|------------------------------------------------|-----------------|-------------------------------------|-----------|-----|------|-------|-------|
| PARAMETER                                      | SYMBOL          | CONDITIONS                          | MIN       | TYP | MAX  | UNITS | Notes |
| Maximum Supply Voltage                         | VDDxxx          | Supply Voltage                      |           |     | 4.6  | V     | 7     |
| Maximum Supply Voltage                         | VDDxxx_IO       | Low-Voltage Differential I/O Supply |           |     | 3.8  | V     | 7     |
| Maximum Input Voltage                          | VIH             | 3.3V Inputs                         |           |     | 4.6  | V     | 4,5,7 |
| Minimum Input Voltage                          | V <sub>IL</sub> | Any Input                           | GND - 0.5 |     |      | V     | 4,7   |
| Case Temperature                               | Tcase           |                                     |           |     | 115  | °C    |       |
| Thermal Resistance from Die to Ambient<br>Air  | JA              |                                     |           |     | 32.5 | °C/W  |       |
| Thermal Resistance from Die to Package<br>Case | JC              |                                     |           |     | 68.2 | °C/W  |       |
| Storage Temperature                            | Ts              | -                                   | -65       |     | 150  | °C    | 4,7   |
| Input ESD protection                           | ESD prot        | Human Body Model                    | 2000      |     |      | V     | 6,7   |

<sup>1</sup>Guaranteed by design and characterization, not 100% tested in production.

<sup>2</sup> Operation under these conditions is neither implied, nor guaranteed.

<sup>3</sup> Maximum input voltage is not to exceed VDD

## AC Electrical Characteristics - Low Power Differential Outputs

| PARAMETER                  | SYMBOL    | CONDITIONS               | MIN  | TYP   | MAX  | UNITS | NOTES |
|----------------------------|-----------|--------------------------|------|-------|------|-------|-------|
| Rising Edge Slew Rate      | tSLR      | Averaging on             | 2.5  | 3.35  | 4    | V/ns  | 2, 3  |
| Falling Edge Slew Rate     | tFLR      | Averaging on             | 2.5  | 3.30  | 4    | V/ns  | 2, 3  |
| Slew Rate Variation        | tSLVAR    | Averaging on             |      |       | 20   | %     | 1, 10 |
| Differential Voltage Swing | VSWING    | Averaging off            | 300  |       |      | mV    | 2     |
| Crossing Point Voltage     | VXABS     | Averaging off            | 300  | 405.5 | 550  | mV    | 1,4,5 |
| Crossing Point Variation   | VXABSVAR  | Averaging off            |      | 60    | 140  | mV    | 1,4,9 |
| Maximum Output Voltage     | VHIGH     | Averaging off            |      | 894   | 1150 | mV    | 1,7   |
| Minimum Output Voltage     | VLOW      | Averaging off            | -300 | 59.5  |      | mV    | 1,8   |
| Duty Cycle                 | DCYC      | Averaging on             | 45   | 51.0  | 55   | %     | 2     |
| CPU[1:0] Skew              | CPUSKEW10 | Differential Measurement |      | 47    | 100  | ps    | 1     |
| CPU[2_ITP:0] Skew          | CPUSKEW20 | Differential Measurement |      | 125   | 150  | ps    | 1     |
| SRC[10:0] Skew             | SRCSKEW   | Differential Measurement |      | 704   | 3000 | ps    | 1,6   |

NOTES on DIF Output AC Specs: (unless otherwise noted, guaranteed by design and characterization, not 100% tested in production).

<sup>1</sup>Measurement taken for single ended waveform on a component test board (not in system)

<sup>2</sup> Measurement taken from differential waveform on a component test board. (not in system)

<sup>3</sup> Slew rate emastured through V\_swing voltage range centered about differential zero

<sup>4</sup> Vcross is defined at the voltage where Clock = Clock#, measured on a component test board (not in system)

<sup>5</sup> Only applies to the differential rising edge (Clock rising, Clock# falling)

<sup>6</sup> Total distributed intentional SRC to SRC skew.

<sup>7</sup> The max voltage including overshoot.

<sup>8</sup> The min voltage including undershoot.

<sup>9</sup> The total variation of all Vcross measurements in any particular system. Note this is a subset of V\_cross min/mas (V\_Cross absolute) allowed. The intent is to limit Vcross induced modulation by setting C\_cross\_delta to be smaller than V\_Cross absolute.

<sup>10</sup> Matching applies to rising edge rate for Clock and falling edge rate for Clock#. It is measured using a +/-75mV window centered on the average cross point where Clock rising meets Clock# falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations.

### **Clock Jitter Specs - Low Power Differential Outputs**

| PARAMETER                    | SYMBOL   | CONDITIONS               | MIN | TYP  | MAX | UNITS | NOTES |
|------------------------------|----------|--------------------------|-----|------|-----|-------|-------|
| CPU Jitter - Cycle to Cycle  | CPUJC2C  | Differential Measurement |     | 58.1 | 85  | ps    | 1     |
| SRC Jitter - Cycle to Cycle  | SRCJC2C  | Differential Measurement |     | 36.2 | 125 | ps    | 1,2   |
| SATA Jitter - Cycle to Cycle | SATAJC2C | Differential Measurement |     | 46.8 | 125 | ps    | 1     |
| DOT Jitter - Cycle to Cycle  | DOTJC2C  | Differential Measurement |     | 73.0 | 250 | ps    | 1     |

NOTES on DIF Output Jitter: (unless otherwise noted, guaranteed by design and characterization, not 100% tested in production).

<sup>1</sup>JItter specs are specified as measured on a clock characterization board. System designers need to take special care not to use these numbers, as the insystem performance will be somewhat degraded. The receiver EMTS (chispet or CPU) will have the receiver jitter specs as measured in a real system.

<sup>2</sup> Phase jitter requirement: The SRC outputs will meet the reference clock jitter requirements from the PCI Express Gen1 Base Spec. The test is performed on a component test board under quiet conditions with all outputs on. Jitter analysis is performed using the standardized tool provided by the PCI SIG.

## Electrical Characteristics - Input/Supply/Common Output DC Parameters

| Electrical Characteristics - Input               |                          |                                                             | N 41N I              |           |                       |             | NULL  |
|--------------------------------------------------|--------------------------|-------------------------------------------------------------|----------------------|-----------|-----------------------|-------------|-------|
| PARAMETER                                        | SYMBOL<br>Tambient       | CONDITIONS                                                  | MIN                  | TYP       | MAX                   | UNITS<br>°C | Notes |
| Ambient Operating Temp<br>Supply Voltage         | VDDxxx                   | -<br>Supply Voltage                                         | 0<br>3.135           | 25<br>3.3 | 70<br>3.465           | V           |       |
| Supply Voltage                                   | VDDxxx<br>VDDxxx_IO      | Low-Voltage Differential I/O Supply                         | 0.9975               | 1.05      | 3.465                 | V           | 10    |
| Input High Voltage                               |                          | Single-ended 3.3V inputs                                    | 2.2                  | 1.05      | V <sub>DD</sub> + 0.3 | V           | 3     |
| Input Low Voltage                                | VIHSE<br>VILSE           | Single-ended 3.3V inputs                                    | V <sub>SS</sub> -0.3 |           | 0.8                   | v           | 3     |
| Low Threshold Input-                             |                          | Single-ended 5.5 v Inputs                                   | V <sub>SS</sub> -0.5 |           | 0.0                   | v           | 3     |
| High Voltage FSC = Test Mode                     | V <sub>IH_FSC_TEST</sub> | 3.3 V +/-5%                                                 | 2                    |           |                       | V           | 8     |
| Low Threshold Input-<br>FSC = '1' Voltage        | $V_{IH\_FSC\_1}$         | 3.3 V +/-5%                                                 | 0.7                  |           | 1.5                   | V           | 8     |
| Low Threshold Input-<br>FSA,FSB = '1' Voltage    | VIH_FSAB_1               | 3.3 V +/-5%                                                 | 0.7                  |           |                       | V           |       |
| Low Threshold Input-<br>Low Voltage              | V <sub>IL_FS</sub>       | 3.3 V +/-5%                                                 | V <sub>SS</sub> -0.3 |           | 0.35                  | V           |       |
| Input Leakage Current                            | I <sub>IN</sub>          | $V_{IN} = V_{DD}, V_{IN} = GND$                             | -5                   |           | 5                     | uA          | 2     |
|                                                  | IN                       | Inputs with pull up or pull down resistors                  | 0                    |           | 0                     | u/ (        |       |
| Input Leakage Current                            | I <sub>INRES</sub>       | $V_{IN} = V_{DD}$ , $V_{IN} = GND$                          | -200                 |           | 200                   | uA          |       |
| Output High Voltage                              | VOHSE                    | Single-ended outputs, $I_{OH} = -1 \text{ mA}$              | 2.4                  |           |                       | V           |       |
| Output Low Voltage                               | VOLSE                    | Single-ended outputs, $I_{OL} = 1 \text{ mA}$               |                      |           | 0.4                   | V           |       |
| On eventing Councilly Course at                  | I <sub>DDOP3.3</sub>     | Full Active, $C_L = Full load; IDD 3.3V$                    |                      | 135       | 200                   | mA          |       |
| Operating Supply Current                         | I <sub>DDOPIO</sub>      | Full Active, $C_L$ = Full load; IDD IO                      |                      | 72        | 80                    | mA          |       |
|                                                  | I <sub>D DIAMT3.3</sub>  | M1 mode, 3.3V Rail                                          |                      | 53        | 65                    | mA          |       |
| iAMT Mode Current                                | IDDIAMTIO                | M1 Mode, IO Rail                                            |                      | 7         | 10                    | mA          |       |
| _                                                | I <sub>DDPD3.3</sub>     | Power down mode, 3.3V Rail, B63b0 = '1'                     |                      | 22        | 25                    | mA          |       |
| Powerdown Current                                | I <sub>DDPDIO</sub>      | Power down mode, IO Rail                                    |                      | 0.01      | 0.1                   | mA          |       |
| Input Frequency                                  | Fi                       | $V_{DD} = 3.3 \text{ V}$                                    |                      | 14.31818  | 15                    | MHz         |       |
| Pin Inductance                                   | L <sub>pin</sub>         |                                                             |                      |           | 7                     | nH          |       |
|                                                  |                          | Logic Inputs                                                | 1.5                  |           | 5                     | pF          |       |
| In put Capacita nce                              | Cout                     | Output pin capacitance                                      |                      |           | 6                     | pF          |       |
| input oupuoliance                                | C <sub>INX</sub>         | X1 & X2 pins                                                |                      |           | 6                     | pF          |       |
|                                                  | UINX                     | From VDD Power-Up or de-assertion of PD to                  |                      |           | 0                     | рг          |       |
| Clk Stabilization                                | T <sub>STAB</sub>        | 1st clock                                                   |                      | 1.2       | 1.8                   | ms          | 1     |
| Tdrive CR off                                    | TDRCROFF                 | Output stop after CR deasserted                             |                      |           | 400                   | ns          |       |
| Tdrive_CR_on                                     |                          | Output stop after CR asserted                               |                      |           | 400                   |             |       |
| Turive_CR_on                                     | DRCRON                   | CPU output enable after                                     |                      |           | 0                     | us          |       |
| Tdrive_CPU                                       | T <sub>DRSRC</sub>       | PCI_STOP# de-assertion                                      |                      |           | 10                    | ns          |       |
| Tfall_SE                                         | T <sub>FALL</sub>        | Fall/rise time of all 3.3V control inputs from 20-          |                      |           | 10                    | ns          | 1     |
| Trise_SE                                         | T <sub>RISE</sub>        | 80%. Inputs must be monotonic                               |                      |           | 10                    | ns          | 1     |
| SMBus Voltage                                    | V <sub>DD</sub>          |                                                             | 2.7                  |           | 5.5                   | V           |       |
| Low-level Output Voltage                         | VOLSMB                   | @ I <sub>PULLUP</sub>                                       |                      |           | 0.4                   | V           |       |
| Current sinking at<br>V <sub>OLSMB</sub> = 0.4 V | I <sub>PULLUP</sub>      | SMB Data Pin                                                | 4                    |           |                       | mA          |       |
| SCLK/SDATA<br>Clock/Data Rise Time               | T <sub>RI2C</sub>        | (Max VIL - 0.15) to<br>(Min VIH + 0.15)                     |                      |           | 1000                  | ns          |       |
| SCLK/SDATA<br>Clock/Data Fall Time               | T <sub>FI2C</sub>        | (Min VII + 0.15)<br>(Min VIH + 0.15) to<br>(Max VIL - 0.15) |                      |           | 300                   | ns          |       |
| Maximum SMBus Operating Frequency                | F <sub>SMBUS</sub>       |                                                             |                      |           | 100                   | kHz         |       |
| Spread Spectrum Modulation Frequency             | f <sub>SSMOD</sub>       | Triangular Modulation                                       | 30                   | 32.54     | 33                    | kHz         |       |

NOTES on DC Parameters: (unless otherwise noted, guaranteed by design and characterization, not 100% tested in production).

<sup>1</sup>Signal is required to be monotonic in this region.

 $^{\rm 2}\,{\rm input}$  leakage current does not include inputs with pull-up or pull-down resistors

<sup>3</sup> 3.3V referenced inputs are: PCI\_STOP#, CPU\_STOP#, TME, SRC5\_EN, ITP\_EN, SCLKL, SDATA, TESTMODE, TESTSEL, CKPWRGD and CR# inputs if selected. <sup>4</sup> Intentionally blank

<sup>5</sup> Maximum VIH is not to exceed VDD

<sup>6</sup> Human Body Model

<sup>7</sup> Operation under these conditions is neither implied, nor guaranteed.

<sup>8</sup> Frequency Select pins which have tri-level input

## ICS9LPR501 64-PIN CK505 W/FULLY INTEGRATED VOLTAGE REGULATOR

## Electrical Characteristics - PCICLK/PCICLK\_F

| PARAMETER                  | SYMBOL                | CONDITIONS                     | MIN      | TYP  | MAX      | UNITS | NOTES |
|----------------------------|-----------------------|--------------------------------|----------|------|----------|-------|-------|
| Long Accuracy              | ppm                   | see Tperiod min-max values     | -100     | 0    | 100      | ppm   | 1,2   |
| Clock period               | т                     | 33.33MHz output no spread      | 29.99700 |      | 30.00300 | ns    | 2     |
| Стоск репос                | perio d               | 33.33MHz output spread         | 30.08421 |      | 30.23459 | ns    | 2     |
| Absolute min/max period    | т                     | 33.33MHz output no spread      | 29.49700 |      | 30.50300 | ns    | 2     |
| Absolute min/max period    | abs                   | 33.33MHz output nominal/spread | 29.56617 |      | 30.58421 | ns    | 2     |
| Rising Edge Slew Rate      | t <sub>SLR</sub>      | Measured from 0.8 to 2.0 V     | 1        | 1.71 | 4        | V/ns  | 1     |
| Falling Edge Slew Rate     | t <sub>FLR</sub>      | Measured from 2.0 to 0.8 V     | 1        | 1.78 | 4        | V/ns  | 1     |
| Pin to Pin Skew            | t <sub>skew</sub>     | $V_{T} = 1.5 V$                |          |      | 250      | ps    | 2     |
| Intential PCI to PCI delay | t <sub>skew</sub>     | V <sub>T</sub> = 1.5 V         | 100      | 187  | 300      | ps    | 2     |
| Duty Cycle                 | d <sub>t1</sub>       | V <sub>T</sub> = 1.5 V         | 45       | 51   | 55       | %     | 2     |
| Jitter, Cycle to cycle     | t <sub>jcyc-cyc</sub> | $V_{T} = 1.5 V$                |          | 103  | 500      | ps    | 2     |

## Intentional PCI Clock to Clock Delay



## Electrical Characteristics - USB48MHz

| PARAMETER               | SYMBOL                | CONDITIONS                 | MIN      | TYP   | MAX      | UNITS | NOTES |
|-------------------------|-----------------------|----------------------------|----------|-------|----------|-------|-------|
| Long Accuracy           | ppm                   | see Tperiod min-max values | -100     | 0     | 100      | ppm   | 2,4   |
| Clock period            | Tperiod               | 48.00MHz output nominal    | 20.83125 |       | 20.83542 | ns    | 2,3   |
| Absolute min/max period | T <sub>abs</sub>      | 48.00MHz output nominal    | 20.48125 |       | 21.18542 | ns    | 2     |
| CLK High Time           | T <sub>HIGH</sub>     |                            | 8.216563 |       | 11.15198 | V     |       |
| CLK Low time            | T <sub>LOW</sub>      |                            | 7.816563 |       | 10.95198 | V     |       |
| Rising Edge Slew Rate   | t <sub>SLR</sub>      | Measured from 0.8 to 2.0 V | 1        | 1.2   | 2        | V/ns  | 1     |
| Falling Edge Slew Rate  | t <sub>FLR</sub>      | Measured from 2.0 to 0.8 V | 1        | 1.3   | 2        | V/ns  | 1     |
| Duty Cycle              | d <sub>t1</sub>       | V <sub>T</sub> = 1.5 V     | 45       | 50.8% | 55       | %     | 2     |
| Jitter, Cycle to cycle  | t <sub>jcyc-cyc</sub> | V <sub>T</sub> = 1.5 V     |          | 132.2 | 350      | ps    | 2     |

## Electrical Characteristics - REF-14.318MHz

| PARAMETER               | SYMBOL    | CONDITIONS                 | MIN      | TYP  | MAX      | UNITS | Notes |
|-------------------------|-----------|----------------------------|----------|------|----------|-------|-------|
| Long Accuracy           | ppm       | see Tperiod min-max values | -100     | 0    | 100      | ppm   | 2,4   |
| Clock period            | Tperiod   | 14.318MHz output nominal   | 69.82033 |      | 69.86224 | ns    | 2, 3  |
| Absolute min/max period | Tabs      | 14.318MHz output nominal   | 69.83400 |      | 70.84800 | ns    | 2     |
| CLK High Time           | THIGH     |                            | 29.97543 |      | 38.46654 | V     |       |
| CLK Low time            | TLOW      |                            | 29.57543 |      | 38.26654 | V     |       |
| Rising Edge Slew Rate   | tSLR      | Measured from 0.8 to 2.0 V | 1        | 1.4  | 4        | V/ns  | 1     |
| Falling Edge Slew Rate  | tFLR      | Measured from 2.0 to 0.8 V | 1        | 1.7  | 4        | V/ns  | 1     |
| Duty Cycle              | dt 1      | VT = 1.5 V                 | 45       | 53.1 | 55       | %     | 2     |
| Jitter, Cycle to cycle  | tjcyc-cyc | VT = 1.5 V                 |          | 138  | 1000     | ps    | 2     |

## Electrical Characteristics - SE1/2=25MHz

| PARAMETER               | SYMBOL                | CONDITIONS                          | MIN      | TYP  | MAX      | UNITS | NOTES |
|-------------------------|-----------------------|-------------------------------------|----------|------|----------|-------|-------|
| Long Accuracy           | ppm                   | see Tperiod min-max values          | -100     | 0    | 100      | ppm   | 1,2   |
| Clock period            | Tperiod               | 25.00MHz output nominal             | 39.99600 |      | 40.00400 | ns    | 1     |
| Absolute min/max period | T <sub>abs</sub>      | 25.00MHz output nominal             | 39.32360 |      | 40.67640 | ns    | 1     |
| Rising Edge Slew Rate   | t <sub>SLR</sub>      | Measured from 0.8 to 2.0 V          | 1        | 1.2  | 2        | V/ns  | 1     |
| Falling Edge Slew Rate  | t <sub>FLR</sub>      | Measured from 2.0 to 0.8 V          | 1        | 1.3  | 2        | V/ns  | 1     |
| Duty Cycle              | d <sub>t1</sub>       | V <sub>T</sub> = 1.5 V              | 45       | 50.8 | 55       | %     | 1     |
| Jitter, Cycle to cycle  | t <sub>jcyc-cyc</sub> | V <sub>T</sub> = 1.5 V              |          | 60   | 500      | ps    | 1     |
| Jitter, Long Term       | t <sub>LTJ</sub>      | V <sub>T</sub> = 1.5 V @ 10us delay |          | 780  | 1000     | ps    | 1     |

### NOTES on SE outputs: (unless otherwise noted, guaranteed by design and characterization, not 100% tested in production).

<sup>1</sup>Edge rate in system is measured from 0.8V to 2.0V.

<sup>2</sup> Duty cycle, Peroid and Jitter are measured with respect to 1.5V

<sup>3</sup> The average period over any 1us period of time

<sup>4</sup> Using frequency counter with the measurment interval equal or greater that 0.15s, target frequencies are 14.318180 MHz, 33.333333MHz and 48.000000 MHz

| FS∟C <sup>2</sup><br>B0b7 | FS <sub>L</sub> B <sup>1</sup><br>B0b6 | FS <sub>L</sub> A <sup>1</sup><br>B0b5 | CPU<br>MHz | SRC<br>MHz | PCI<br>MHz | REF<br>MHz | USB<br>MHz | DOT<br>MHz |
|---------------------------|----------------------------------------|----------------------------------------|------------|------------|------------|------------|------------|------------|
| 0                         | 0                                      | 0                                      | 266.66     |            |            |            |            |            |
| 0                         | 0                                      | 1                                      | 133.33     |            |            |            |            |            |
| 0                         | 1                                      | 0                                      | 200.00     |            |            |            |            |            |
| 0                         | 1                                      | 1                                      | 166.66     | 100.00     | 33.33      | 14.318     | 48.00      | 96.00      |
| 1                         | 0                                      | 0                                      | 333.33     |            |            |            |            |            |
| 1                         | 0                                      | 1                                      | 100.00     |            |            |            |            |            |
| 1                         | 1                                      | 0                                      | 400.00     |            |            |            |            |            |
| 1                         | 1 1 1 Reserved                         |                                        |            |            |            |            |            |            |

### Table 1: CPU Frequency Select Table

 FS<sub>L</sub>A and FS<sub>L</sub>B are low-threshold inputs.Please see V<sub>IL\_FS</sub> and V<sub>IH\_FS</sub> specifications in the Input/Supply/Common Output Parameters Table for correct values. Also refer to the Test Clarification Table.

2. FS\_LC is a three-level input. Please see the  $V_{\rm IL\_FS}$  and  $V_{\rm IH\_FS}$ 

specifications in the Input/Supply/Common Output Parameters Table for correct values.

### Table 2: PLL3 Quick Configuration

| Dika | D1b0 | Diho | B1b1 | Pin 17 | Pin 18 | Spread           | Comment                            |
|------|------|------|------|--------|--------|------------------|------------------------------------|
| B1b4 | B1b3 | B1b2 | вірі | MHz    | MHz    | %                | Comment                            |
| 0    | 0    | 0    | 0    |        |        | PLL 3 disab      | led                                |
| 0    | 0    | 0    | 1    | 100.00 | 100.00 | 0.5% Down Spread | SRCCLK1 from SRC_MAIN              |
| 0    | 0    | 1    | 0    | 100.00 | 100.00 | 0.5% Down Spread | Only SRCCLK1 from PLL3             |
| 0    | 0    | 1    | 1    | 100.00 | 100.00 | 1% Down Spread   | Only SRCCLK1 from PLL3             |
| 0    | 1    | 0    | 0    | 100.00 | 100.00 | 1.5% Down Spread | Only SRCCLK1 from PLL3             |
| 0    | 1    | 0    | 1    | 100.00 | 100.00 | 2% Down Spread   | Only SRCCLK1 from PLL3             |
| 0    | 1    | 1    | 0    | 100.00 | 100.00 | 2.5% Down Spread | Only SRCCLK1 from PLL3             |
| 0    | 1    | 1    | 1    | N/A    | N/A    | N/A              | N/A                                |
| 1    | 0    | 0    | 0    | 24.576 | 24.576 | None             | 24.576Mhz on SE1 and SE2           |
| 1    | 0    | 0    | 1    | 24.576 | 98.304 | None             | 24.576Mhz on SE1, 98.304Mhz on SE2 |
| 1    | 0    | 1    | 0    | 98.304 | 98.304 | None             | 98.304Mhz on SE1 and SE2           |
| 1    | 0    | 1    | 1    | 27.000 | 27.000 | None             | 27Mhz on SE1 and SE2               |
| 1    | 1    | 0    | 0    | 25.000 | 25.000 | None             | 25Mhz on SE1 and SE2               |
| 1    | 1    | 0    | 1    | N/A    | N/A    | N/A              | N/A                                |
| 1    | 1    | 1    | 0    | N/A    | N/A    | N/A              | N/A                                |
| 1    | 1    | 1    | 1    | N/A    | N/A    | N/A              | N/A                                |

## Table 3: IO\_Vout select table

| B9b2 | B9b1 | B9b0 | IO_Vout |
|------|------|------|---------|
| 0    | 0    | 0    | 0.3V    |
| 0    | 0    | 1    | 0.4V    |
| 0    | 1    | 0    | 0.5V    |
| 0    | 1    | 1    | 0.6V    |
| 1    | 0    | 0    | 0.7V    |
| 1    | 0    | 1    | 0.8V    |
| 1    | 1    | 0    | 0.9V    |
| 1    | 1    | 1    | 1.0V    |

## Table 4: Device ID table

| B8b7 | B8b6 | B8b5 | B8b4 | Comment          |
|------|------|------|------|------------------|
| 0    | 0    | 0    | 0    | 56 pin TSSOP/QFN |
| 0    | 0    | 0    | 1    | 64 pin TSSOP/QFN |
| 0    | 0    | 1    | 0    | Reserved         |
| 0    | 0    | 1    | 1    | Reserved         |
| 0    | 1    | 0    | 0    | Reserved         |
| 0    | 1    | 0    | 1    | Reserved         |
| 0    | 1    | 1    | 0    | Reserved         |
| 0    | 1    | 1    | 1    | Reserved         |
| 1    | 0    | 0    | 0    | Reserved         |
| 1    | 0    | 0    | 1    | Reserved         |
| 1    | 0    | 1    | 0    | Reserved         |
| 1    | 0    | 1    | 1    | Reserved         |
| 1    | 1    | 0    | 0    | Reserved         |
| 1    | 1    | 0    | 1    | Reserved         |
| 1    | 1    | 1    | 0    | Reserved         |
| 1    | 1    | 1    | 1    | Reserved         |

## **PCI\_STOP#** Power Management

|              |           |                 | Single-end | ded Clocks   |                               | al Clocks<br>ot CPU) |
|--------------|-----------|-----------------|------------|--------------|-------------------------------|----------------------|
| SMBus OE Bit | PCI_STOP# | Stop Drive Mode | Stoppable  | Free running | Stoppable                     | Free running         |
|              | 1         | X               | Running    | Running      | Running                       | Running              |
| Enable       |           | 0               |            |              | CK= High<br>CK# = Low         | Running              |
| Enable       | 0         | 1               | Low        | Low          | CK= Pull<br>down<br>CK# = Low | Running              |
| Disable      | X         | X               | Lo         | W            | CK= Pull dow                  | n, CK# = Low         |

## CPU\_STOP# Power Management

|              |           |                 | Differenti                 | al Clocks    |
|--------------|-----------|-----------------|----------------------------|--------------|
| SMBus OE Bit | PCI_STOP# | Stop Drive Mode | Stoppable                  | Free running |
|              | 1         | x               | Running                    | Running      |
| Enable       | 0         | 0               | CK= High<br>CK# = Low      | Running      |
|              | 0         | 1               | CK= Pull down<br>CK# = Low | Running      |
| Disable      | Х         | X               | Lo                         | W            |

## **CR# Power Management**

|              |     |                 | Differenti    | al Clocks    |
|--------------|-----|-----------------|---------------|--------------|
| SMBus OE Bit | CR# | Stop Drive Mode | Stoppable     | Free running |
| Enable       | 1   |                 | Running       | Running      |
| Enable       | 0   | X               | CK= Pull dow  | n, CK# = Low |
| Disable      | Х   |                 | CK = Pull dow | n, CK# = Low |

## **PD# Power Management**

|                                        | Single-ended Clocks |                 | Differential Clocks<br>(Except CPU1) | CPU1                       |
|----------------------------------------|---------------------|-----------------|--------------------------------------|----------------------------|
| Device State                           | w/o Latched input   | w/Latched input |                                      |                            |
| Latches Open                           |                     |                 | CK= Pull down, CK# = Low             | CK= Pull down, CK# = Low   |
| Power Down                             | Low                 | Hi-Z            | CK= Pull down<br>CK# = Low           | CK= Pull down<br>CK# = Low |
| M1                                     | LOW                 | Γ1 <b>-</b> Ζ   | CK= Pull down<br>CK# = Low           | Running                    |
| Virtual Power Cycle<br>to Latches Open |                     |                 | CK= Pull down, CK# = Low             | CK= Pull down, CK# = Low   |

## General SMBus serial interface information for the ICS9LPR501

## How to Write:

- Controller (host) sends a start bit.
- Controller (host) sends the write address D2 (H)
- ICS clock will *acknowledge*
- Controller (host) sends the begining byte location = N
- ICS clock will *acknowledge*
- Controller (host) sends the data byte count = X
- ICS clock will *acknowledge*
- Controller (host) starts sending Byte N through Byte N + X -1
- ICS clock will acknowledge each byte one at a time
- Controller (host) sends a Stop bit

Controller (Host)

## How to Read:

- Controller (host) will send start bit.
- Controller (host) sends the write address D2 (H)
- ICS clock will *acknowledge*
- Controller (host) sends the begining byte location = N
- ICS clock will acknowledge
- Controller (host) will send a separate start bit.
- Controller (host) sends the read address D3  $_{\scriptscriptstyle (H)}$
- ICS clock will *acknowledge*
- ICS clock will send the data byte count = X
- ICS clock sends Byte N + X -1
- ICS clock sends Byte 0 through byte X (if X<sub>(H)</sub> was written to byte 8).
- Controller (host) will need to acknowledge each byte
- Controllor (host) will send a not acknowledge bit
- Controller (host) will send a stop bit

| In   | dex Block Rea                | ad C     | Operation          |
|------|------------------------------|----------|--------------------|
| Co   | ntroller (Host)              | ICS      | S (Slave/Receiver) |
| Т    | starT bit                    |          |                    |
| Slav | ve Address D2 <sub>(H)</sub> |          |                    |
| WR   | WRite                        |          |                    |
|      |                              |          | ACK                |
| Beg  | inning Byte = N              |          |                    |
|      | •                            |          | ACK                |
| RT   | Repeat starT                 |          |                    |
| Slav | ve Address D3 <sub>(H)</sub> |          |                    |
| RD   | ReaD                         |          |                    |
|      |                              |          | ACK                |
|      |                              |          |                    |
|      |                              | Da       | ata Byte Count = X |
|      | ACK                          | <b> </b> | <u> </u>           |
|      | A 01/                        | ┨┝       | Beginning Byte N   |
|      | ACK                          | ╏╻┝      | 0                  |
|      | 0                            | X Byte   | 0                  |
| 0    |                              |          | 0                  |
|      | 0                            | 1 1      | -                  |
|      |                              | 1        | Byte N + X - 1     |
| Ν    | Not acknowledge              |          | ,                  |
| Р    | stoP bit                     |          |                    |

starT bit Т Slave Address D2(H) WR WRite ACK Beginning Byte = N ACK Data Byte Count = X ACK Beginning Byte N ACK 0 Byte Ο 0 Ο  $\times$ 0 Ο Byte N + X - 1 ACK Ρ stoP bit

**Index Block Write Operation** 

ICS (Slave/Receiver)

## Byte 0 FS Readback and PLL Selection Register

| Bit | Pin | Name         | Description                                                                                                                                                                                                                                                    | Туре | 0                                        | 1                       | Default |
|-----|-----|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------------------------------|-------------------------|---------|
| 7   | -   | FSLC         | CPU Freq. Sel. Bit (Most Significant)                                                                                                                                                                                                                          | R    |                                          |                         | Latch   |
| 6   | -   | FSLB         | CPU Freq. Sel. Bit                                                                                                                                                                                                                                             | R    | See Table 1 : CPU Frequency Select Table |                         | Latch   |
| 5   | -   | FSLA         | CPU Freq. Sel. Bit (Least Significant)                                                                                                                                                                                                                         | R    |                                          |                         | Latch   |
| 4   | -   | iAMT_EN      | Set via SMBus or dynamically by CK505 if<br>detects dynamic M1                                                                                                                                                                                                 | RW   | Legacy Mode                              | iAMT Enabled            | 0       |
| 3   |     | Reserved     | Reserved                                                                                                                                                                                                                                                       | RW   |                                          |                         | 0       |
| 2   | -   | SRC_Main_SEL | Select source for SRC Main                                                                                                                                                                                                                                     | RW   | SRC Main = PLL1                          | SRC Main = PLL3         | 0       |
| 1   | -   | SATA_SEL     | Select source for SATA clock                                                                                                                                                                                                                                   | RW   | SATA = SRC_Main                          | SATA = PLL2<br>See Note | 0       |
| 0   | -   | PD_Restore   | <ul> <li>1 = on Power Down de-assert return to last known<br/>state</li> <li>0 = clear all SMBus configurations as if cold<br/>power-on and go to latches open state</li> <li>This bit is ignored and treated at '1' if device is in<br/>iAMT mode.</li> </ul> | RW   | Configuration Not Saved                  | Configuration Saved     | 1       |

Note: If setting Byte 0, bit 1 to 1 to make SATA non-spreading, Byte63, bit 1 must be set to '1' first to turn on the SATA PLL.

## Byte 1 DOT96 Select and PLL3 Quick Config Register

| Bit | Pin   | Name         | Description                    | Туре | 0                 | 1                   | Default |
|-----|-------|--------------|--------------------------------|------|-------------------|---------------------|---------|
| 7   | 13/14 | SRC0_SEL     | Select SRC0 or DOT96           | RW   | SRC0              | DOT96               | 0       |
| 6   | -     | PLL1_SSC_SEL | Select 0.5% down or center SSC | RW   | Down spread       | Center spread       | 0       |
| 5   |       | PLL3_SSC_SEL | Select 0.5% down or center SSC | RW   | Down spread       | Center spread       | 0       |
| 4   |       | PLL3_CF3     | PLL3 Quick Config Bit 3        | RW   |                   |                     | 0       |
| 3   |       | PLL3_CF2     | PLL3 Quick Config Bit 2        | RW   | See Table 2: PLL3 | Quick Configuration | 0       |
| 2   |       | PLL3_CF1     | PLL3 Quick Config Bit 1        | RW   | Only applies if E | 3yte 0, bit 2 = 0.  | 0       |
| 1   |       | PLL3_CF0     | PLL3 Quick Config Bit 0        | RW   |                   |                     | 1       |
| 0   |       | PCI_SEL      | PCI_SEL                        | RW   | PCI from PLL1     | PCI from SRC_MAIN   | 1       |

## **Byte 2 Output Enable Register**

| Bit | Pin | Name     | Description                                       | Туре | 0               | 1              | Default |
|-----|-----|----------|---------------------------------------------------|------|-----------------|----------------|---------|
| 7   |     | REF_OE   | Output enable for REF, if disabled output is Hi-Z | RW   | Output Disabled | Output Enabled | 1       |
| 6   |     | USB_OE   | Output enable for USB                             | RW   | Output Disabled | Output Enabled | 1       |
| 5   |     | PCIF5_OE | Output enable for PCI5                            | RW   | Output Disabled | Output Enabled | 1       |
| 4   |     | PCI4_OE  | Output enable for PCI4                            | RW   | Output Disabled | Output Enabled | 1       |
| 3   |     | PCI3_OE  | Output enable for PCI3                            | RW   | Output Disabled | Output Enabled | 1       |
| 2   |     | PCI2_OE  | Output enable for PCI2                            | RW   | Output Disabled | Output Enabled | 1       |
| 1   |     | PCI1_OE  | Output enable for PCI1                            | RW   | Output Disabled | Output Enabled | 1       |
| 0   |     | PCI0_OE  | Output enable for PCI0                            | RW   | Output Disabled | Output Enabled | 1       |

### **Byte 3 Output Enable Register**

| Bit | Pin | Name        | Description                   | Туре | 0               | 1              | Default |
|-----|-----|-------------|-------------------------------|------|-----------------|----------------|---------|
| 7   |     | SRC11_OE    | Output enable for SRC11       | RW   | Output Disabled | Output Enabled | 1       |
| 6   |     | SRC10_OE    | Output enable for SRC10       | RW   | Output Disabled | Output Enabled | 1       |
| 5   |     | SRC9_OE     | Output enable for SRC9        | RW   | Output Disabled | Output Enabled | 1       |
| 4   |     | SRC8/ITP_OE | Output enable for SRC8 or ITP | RW   | Output Disabled | Output Enabled | 1       |
| 3   |     | SRC7_OE     | Output enable for SRC7        | RW   | Output Disabled | Output Enabled | 1       |
| 2   |     | SRC6_OE     | Output enable for SRC6        | RW   | Output Disabled | Output Enabled | 1       |
| 1   |     | SRC5_OE     | Output enable for SRC5        | RW   | Output Disabled | Output Enabled | 1       |
| 0   |     | SRC4_OE     | Output enable for SRC4        | RW   | Output Disabled | Output Enabled | 1       |

## Byte 4 Output Enable and Spread Spectrum Disable Register

| Bit | Pin | Name          | Description                     | Туре | 0               | 1              | Default |
|-----|-----|---------------|---------------------------------|------|-----------------|----------------|---------|
| 7   |     | SRC3_OE       | Output enable for SRC3          | RW   | Output Disabled | Output Enabled | 1       |
| 6   |     | SATA/SRC2_OE  | Output enable for SATA/SRC2     | RW   | Output Disabled | Output Enabled | 1       |
| 5   |     | SRC1_OE       | Output enable for SRC1          | RW   | Output Disabled | Output Enabled | 1       |
| 4   |     | SRC0/DOT96_OE | Output enable for SRC0/DOT96    | RW   | Output Disabled | Output Enabled | 1       |
| 3   |     | CPU1_OE       | Output enable for CPU1          | RW   | Output Disabled | Output Enabled | 1       |
| 2   |     | CPU0_OE       | Output enable for CPU0          | RW   | Output Disabled | Output Enabled | 1       |
| 1   |     | PLL1_SSC_ON   | Enable PLL1's spread modulation | RW   | Spread Disabled | Spread Enabled | 1       |
| 0   |     | PLL3_SSC_ON   | Enable PLL3's spread modulation | RW   | Spread Disabled | Spread Enabled | 1       |

## Byte 5 Clock Request Enable/Configuration Register

| Bit | Pin | Name      | Description                                                                | Туре | 0             | 1             | Default |
|-----|-----|-----------|----------------------------------------------------------------------------|------|---------------|---------------|---------|
| 7   |     | CR#_A_EN  | Enable CR#_A (clk req),<br>PCI0_OE must be = 1 for this bit to take effect | RW   | Disable CR#_A | Enable CR#_A  | 0       |
| 6   |     | CR#_A_SEL | Sets CR#_A to control either SRC0 or SRC2                                  | RW   | CR#_A -> SRC0 | CR#_A -> SRC2 | 0       |
| 5   |     | CR#_B_EN  | Enable CR#_B (clk req)                                                     | RW   | Disable CR#_B | Enable CR#_B  | 0       |
| 4   |     | CR#_B_SEL | Sets CR#_B -> SRC1 or SRC4                                                 | RW   | CR#_B -> SRC1 | CR#_B -> SRC4 | 0       |
| 3   |     | CR#_C_EN  | Enable CR#_C (clk req)                                                     | RW   | Disable CR#_C | Enable CR#_C  | 0       |
| 2   |     | CR#_C_SEL | Sets CR#_C -> SRC0 or SRC2                                                 | RW   | CR#_C -> SRC0 | CR#_C -> SRC2 | 0       |
| 1   |     | CR#_D_EN  | Enable CR#_D (clk req)                                                     | RW   | Disable CR#_D | Enable CR#_D  | 0       |
| 0   |     | CR#_D_SEL | Sets CR#_D -> SRC1 or SRC4                                                 | RW   | CR#_D -> SRC1 | CR#_D -> SRC4 | 0       |

### Byte 6 Clock Request Enable/Configuration and Stop Control Register

| Bit | Pin | Name                    | Description                                       | Туре | 0             | 1                                 | Default |
|-----|-----|-------------------------|---------------------------------------------------|------|---------------|-----------------------------------|---------|
| 7   |     | CR#_E_EN                | Enable CR#_E (clk req) -> SRC6                    | RW   | Disable CR#_E | Enable CR#_E                      | 0       |
| 6   |     | CR#_F_EN                | Enable CR#_F (clk req) -> SRC8                    | RW   | Disable CR#_F | Enable CR#_F                      | 0       |
| 5   |     | CR#_G_EN                | Enable CR#_G (clk req) -> SRC9                    | RW   | Disable CR#_G | Enable CR#_G                      | 0       |
| 4   |     | CR#_H_EN                | Enable CR#_H (clk req) -> SRC10                   | RW   | Disable CR#_H | Enable CR#_H                      | 0       |
| 3   |     | Reserved                | Reserved                                          | RW   |               |                                   | 0       |
| 2   |     | Reserved                | Reserved                                          | RW   |               |                                   | 0       |
| 1   |     | SSCD_STP_CRTL<br>(SRC1) | If set, SSCD (SRC1) stops with PCI_STOP#          | RW   | Free Running  | Stops with PCI_STOP#<br>assertion | 0       |
| 0   |     | SRC_STP_CRTL            | If set, SRCs (except SRC1) stop with<br>PCI_STOP# | RW   | Free Running  | Stops with PCI_STOP#<br>assertion | 0       |

## Byte 7 Vendor ID/ Revision ID

| Bit | Pin | Name            | Description         | Туре        | 0       | 1        | Default |
|-----|-----|-----------------|---------------------|-------------|---------|----------|---------|
| 7   |     | Rev Code Bit 3  |                     | R           |         |          | Х       |
| 6   |     | Rev Code Bit 2  | Revision ID         | R           | }       |          | Х       |
| 5   |     | Rev Code Bit 1  | Revision ID         | R           |         |          | Х       |
| 4   |     | Rev Code Bit 0  |                     | R           | Vendors | nacific  | Х       |
| 3   |     | Vendor ID bit 3 |                     | R           | Vendors | specific | 0       |
| 2   |     | Vendor ID bit 2 | Vendor ID           | Vendor ID R |         | 0        |         |
| 1   |     | Vendor ID bit 1 | ICS is 0001, binary | R           |         |          | 0       |
| 0   |     | Vendor ID bit 0 |                     | R           |         |          | 1       |

### Byte 8 Device ID and Output Enable Register

| Bit | Pin | Name       | Description                                                                         | Туре | 0                   | 1       | Default |
|-----|-----|------------|-------------------------------------------------------------------------------------|------|---------------------|---------|---------|
| 7   |     | Device_ID3 | Table of Davias identifier and as used for                                          | R    | See Device ID Table | 0       |         |
| 6   |     | Device_ID2 | Table of Device identifier codes, used for<br>differentiating between CK505 package | R    |                     | 0       |         |
| 5   |     | Device_ID1 | options, etc.                                                                       | R    |                     | 0       |         |
| 4   |     | Device_ID0 | opiions, etc.                                                                       | R    |                     | 1       |         |
| 3   |     | Reserved   | Reserved                                                                            | RW   | -                   | -       | 0       |
| 2   |     | Reserved   | Reserved                                                                            | RW   | -                   | -       | 0       |
| 1   |     | SE1_OE     | Output enable for SE1                                                               | RW   | Disabled            | Enabled | 0       |
| 0   |     | SE2_OE     | Output enable for SE2                                                               | RW   | Disabled            | Enabled | 0       |

## Byte 9 Output Control Register

| Bit | Pin | Name             | Description                                            | Туре | 0                                                | 1                                 | Default |
|-----|-----|------------------|--------------------------------------------------------|------|--------------------------------------------------|-----------------------------------|---------|
| 7   |     | PCIF5 STOP EN    | Allows control of PCIF5 with assertion of<br>PCI_STOP# | RW   | Free running                                     | Stops with PCI_STOP#<br>assertion | 0       |
| 6   |     | TME_Readback     | Truested Mode Enable (TME) strap status                | R    | normal operation                                 | no overclocking                   | 0       |
| 5   |     | REF Strength     | Sets the REF output drive strength                     | RW   | 1X (2Loads)                                      | 2X (3 Loads)                      | 1       |
| 4   |     | Test Mode Select | Allows test select, ignores REF/FSC/TestSel            | RW   | Outputs HI-Z                                     | Outputs = REF/N                   | 0       |
| 3   |     | Test Mode Entry  | Allows entry into test mode, ignores<br>FSB/TestMode   | RW   | Normal operation                                 | Test mode                         | 0       |
| 2   |     | IO_VOUT2         | IO Output Voltage Select (Most Significant Bit)        | RW   | See Table 3: V_IO Selection<br>(Default is 0.8V) |                                   | 1       |
| 1   |     | IO_VOUT1         | IO Output Voltage Select                               | RW   |                                                  |                                   | 0       |
| 0   |     | IO_VOUT0         | IO Output Voltage Select (Least Significant Bit)       | RW   |                                                  |                                   | 1       |

### Byte 10 CK505 Rev 0.85 Functions (ICS Rev H Silicon and Higher)

| Bit | Pin | Name              | Description                             | Туре | 0                    | 1            | Default |
|-----|-----|-------------------|-----------------------------------------|------|----------------------|--------------|---------|
| 7   |     | SRC5_EN Readback  | Readback of SRC5 enable latch           | R    | CPU/PCI Stop Enabled | SRC5 Enabled | Latch   |
| 6   |     | Reserved          |                                         | RW   | TBD                  | TBD          | 0       |
| 5   |     | Reserved          |                                         | RW   | TBD                  | TBD          | 0       |
| 4   |     | Reserved          | Reserved                                | RW   | TBD                  | TBD          | 0       |
| 3   |     | Reserved          |                                         | RW   | TBD                  | TBD          | 0       |
| 2   |     | Reserved          |                                         | RW   | TBD                  | TBD          | 0       |
| 1   |     | CPU 1 Stop Enable | Enables control of CPU1 with CPU_STOP#  | RW   | Free Running         | Stoppable    | 1       |
| 0   |     | CPU 0 Stop Enable | Enables control of CPU 0 with CPU_STOP# | RW   | Free Running         | Stoppable    | 1       |

## Byte 11 CK505 Rev 1.0 functions (ICS Rev P silicon and higher)

| Bit | Pin | Name             | Description                                 | Туре | 0                   | 1                    | Default |
|-----|-----|------------------|---------------------------------------------|------|---------------------|----------------------|---------|
| 7   |     | Reserved         |                                             | RW   | TBD                 | TBD                  | 0       |
| 6   |     | Reserved         | Reserved                                    | RW   | TBD                 | TBD                  | 0       |
| 5   |     | Reserved         | Reserveu                                    | RW   | TBD                 | TBD                  | 0       |
| 4   |     | Reserved         |                                             | RW   | TBD                 | TBD                  | 0       |
| 3   |     | CPU2_iAMT_EN     | Enables CPU2(ITP) output in iAMT state (M1) | RW   | Off in iAMT         | Free running in iAMT | 0       |
| 2   |     | CPU1_iAMT_EN     | Enables CPU1 output in iAMT state (M1)      | RW   | Off in iAMT         | Free running in iAMT | 1       |
| 1   |     | PCIe-Gen2        | PCIe-Gen2 status                            | R    | PCIe Gen1 compliant | PCIe Gen2 compliant  | 0       |
| 0   |     | CPU2 Stop Enable | Enables control of CPU2(ITP) with CPU_STOP# | RW   | Free Running        | Stoppable            | 1       |

### Byte 12 Byte Count Register

| <u> </u> |     | <i>j</i> |                               |      |   |   |         |
|----------|-----|----------|-------------------------------|------|---|---|---------|
| Bit      | Pin | Name     | Description                   | Туре | 0 | 1 | Default |
| 7        |     | Reserved |                               | RW   |   |   | 0       |
| 6        |     | Reserved |                               | RW   |   |   | 0       |
| 5        |     | BC5      |                               | RW   |   |   | 0       |
| 4        |     | BC4      |                               | RW   |   |   | 0       |
| 3        |     | BC3      | Dood Dook byte count register | RW   |   |   | 1       |
| 2        |     | BC2      | Read Back byte count register | RW   |   |   | 1       |
| 1        |     | BC1      |                               | RW   |   |   | 0       |
| 0        |     | BC0      |                               | RW   |   |   | 1       |

## Byte 13 CK505 PLL1 M/N Programming Register

| Bit | Pin | Name   | Description                                        | Туре | 0 | 1 | Default |
|-----|-----|--------|----------------------------------------------------|------|---|---|---------|
| 7   |     | N Div8 | N Divider 8                                        | RW   | - | - | Х       |
| 6   |     | N Div9 | N Divider 9                                        | RW   | - | - | Х       |
| 5   |     | M Div5 |                                                    | RW   | - | - | Х       |
| 4   |     | M Div4 | The decimal representation of M Div (5:0) is equal | RW   | - | - | Х       |
| 3   |     | M Div3 | to reference divider value. Default at power up =  | RW   | - | - | Х       |
| 2   |     | M Div2 | latch-in or Byte 0 Rom table.                      | RW   | - | - | Х       |
| 1   |     | M Div1 | laton-in or byte o Rom table.                      | RW   | - | - | Х       |
| 0   |     | M Div0 |                                                    | RW   | - | - | Х       |

## Byte 14 CK505 PLL1 M/N Programming Register

| Bit | Pin | Name   | Description                                        | Туре | 0 | 1 | Default |
|-----|-----|--------|----------------------------------------------------|------|---|---|---------|
| 7   |     | N Div7 |                                                    | RW   | - | - | Х       |
| 6   |     | N Div6 |                                                    | RW   | - | - | Х       |
| 5   |     | N Div5 | The decimal representation of N Div (9:0) is equal | RW   | - | - | Х       |
| 4   |     | N Div4 | to VCO divider value. Default at power up = latch- |      | - | - | Х       |
| 3   |     | N Div3 | in or Byte 0 Rom table.                            | RW   | - | - | Х       |
| 2   |     | N Div2 | III OF BYLE O HOITI LADIE.                         | RW   | - | - | Х       |
| 1   |     | N Div1 | F                                                  | RW   | - | - | Х       |
| 0   |     | N Div0 |                                                    | RW   | - | - | Х       |

## Byte 15 CK505 PLL1 Spread Spectrum Control Register

| Bit | Pin | Name | Description                                   | Туре | 0 | 1 | Default |
|-----|-----|------|-----------------------------------------------|------|---|---|---------|
| 7   |     | SSP7 |                                               | RW   | - | - | Х       |
| 6   |     | SSP6 |                                               | RW   | - | - | Х       |
| 5   |     | SSP5 | These Spread Spectrum bits will program the   | RW   | - | - | Х       |
| 4   |     | SSP4 | spread pecentage. Contact ICS for the correct | RW   | - | - | Х       |
| 3   |     | SSP3 | values.                                       | RW   | - | - | Х       |
| 2   |     | SSP2 | values.                                       | RW   | - | - | Х       |
| 1   |     | SSP1 |                                               | RW   | - | - | Х       |
| 0   |     | SSP0 |                                               | RW   | - | - | Х       |

### Byte 16 CK505 PLL1 Spread Spectrum Control Register

| Bit | Pin | Name     | Description                                   | Туре | 0 | 1 | Default |  |  |
|-----|-----|----------|-----------------------------------------------|------|---|---|---------|--|--|
| 7   |     | Reserved | Reserved                                      | RW   | - | - | 0       |  |  |
| 6   |     | SSP14    |                                               | RW   | - | - | х       |  |  |
| 5   |     | SSP13    |                                               | RW   | - | - | Х       |  |  |
| 4   |     | SSP12    | These Spread Spectrum bits will program the   | RW   | - | - | Х       |  |  |
| 3   |     | SSP11    | spread pecentage. Contact ICS for the correct | RW   | - | - | Х       |  |  |
| 2   |     | SSP10    | values.                                       | RW   | - | - | Х       |  |  |
| 1   |     | SSP9     |                                               | RW   | - | - | Х       |  |  |
| 0   |     | SSP8     |                                               | RW   | - | - | Х       |  |  |

## Byte 17 CK505 PLL3 M/N Programming Register

| Bit | Pin | Name   | Description                                        | Туре | 0 | 1 | Default |
|-----|-----|--------|----------------------------------------------------|------|---|---|---------|
| 7   |     | N Div8 | N Divider 8                                        | RW   | - | - | Х       |
| 6   |     | N Div9 | N Divider 9                                        | RW   | - | - | Х       |
| 5   |     | M Div5 |                                                    | RW   | - | - | Х       |
| 4   |     | M Div4 | The decimal representation of M Div (5:0) is equal | RW   | - | - | Х       |
| 3   |     | M Div3 | to reference divider value. Default at power up =  | RW   | - | - | Х       |
| 2   |     | M Div2 | latch-in or Byte 0 Rom table.                      | RW   | - | - | Х       |
| 1   |     | M Div1 | accin-in or byte 0 Rom table.                      | RW   | - | - | Х       |
| 0   |     | M Div0 |                                                    | RW   | - | - | Х       |

### Byte 18 CK505 PLL3 M/N Programming Register

| Bit | Pin | Name    | Description                                        | Туре | 0 | 1 | Default |
|-----|-----|---------|----------------------------------------------------|------|---|---|---------|
| 7   |     | N Div7  |                                                    | RW   | - | - | Х       |
| 6   |     | N Div6  |                                                    | RW   | - | - | Х       |
| 5   |     | N Div5  | The decimal representation of N Div (9:0) is equal | RW   | - | - | Х       |
| 4   |     | N D N/A | to VCO divider value. Default at power up = latch- |      | - | - | Х       |
| 3   |     | N Div3  | in or Byte 0 Rom table.                            | RW   | - | - | Х       |
| 2   |     | N Div2  | In or byte o horn table.                           | RW   | - | - | Х       |
| 1   |     | N Div1  |                                                    | RW   | - | - | Х       |
| 0   |     | N Div0  |                                                    | RW   | - | - | Х       |

## Byte 19 CK505 PLL3 Spread Spectrum Control Register

| Bit | Pin | Name | Description                                   | Туре | 0 | 1 | Default |
|-----|-----|------|-----------------------------------------------|------|---|---|---------|
| 7   |     | SSP7 |                                               | RW   | - | - | Х       |
| 6   |     | SSP6 |                                               | RW   | - | - | Х       |
| 5   |     | SSP5 | These Spread Spectrum bits will program the   | RW   | - | - | Х       |
| 4   |     | SSP4 | spread pecentage. Contact ICS for the correct | RW   | - | - | Х       |
| 3   |     | SSP3 | values.                                       | RW   | - | - | Х       |
| 2   |     | SSP2 | values.                                       | RW   | - | - | Х       |
| 1   |     | SSP1 |                                               | RW   | - | - | Х       |
| 0   |     | SSP0 |                                               | RW   | - | - | Х       |

### Byte 20 CK505 PLL3 Spread Spectrum Control Register

| Bit | Pin | Name     | Description                                   | Туре | 0 | 1 | Default |
|-----|-----|----------|-----------------------------------------------|------|---|---|---------|
| 7   |     | Reserved | Reserved                                      | RW   | - | - | 0       |
| 6   |     | SSP14    |                                               | RW   | - | - | Х       |
| 5   |     | SSP13    |                                               | RW   | - | - | Х       |
| 4   |     | SSP12    | These Spread Spectrum bits will program the   | RW   | - | - | Х       |
| 3   |     | SSP11    | spread pecentage. Contact ICS for the correct | RW   | - | - | Х       |
| 2   |     | SSP10    | values.                                       | RW   | - | - | Х       |
| 1   |     | SSP9     |                                               | RW   | - | - | Х       |
| 0   |     | SSP8     |                                               | RW   | - | - | Х       |

### Byte 21 M/N Enables

| Bit | Pin | Name               | Description | Туре | 0       | 1      | Default |
|-----|-----|--------------------|-------------|------|---------|--------|---------|
| 7   |     | Reserved           |             | RW   |         |        | 0       |
| 6   |     | Reserved           |             | RW   |         |        | 0       |
| 5   |     | Reserved           |             | RW   |         |        | 0       |
| 4   |     | Reserved           |             | RW   |         |        | 0       |
| 3   |     | Reserved           |             | RW   |         |        | 0       |
| 2   |     | Reserved           |             | RW   |         |        | 0       |
| 1   |     | M/N Enable CPU     |             | RW   | Disable | Enable | 0       |
| 0   |     | M/N Enable SRC/PCI |             | RW   | Disable | Enable | 0       |

## Byte 22 CPU M/N Programming

| Bit | Pin | Name        | Description           | Туре | 0 | 1 | Default |
|-----|-----|-------------|-----------------------|------|---|---|---------|
| 7   |     | N Div bit 8 | PLL 1 M/N Programming | RW   | - | - | Х       |
| 6   |     | N Div bit 9 | (Intel PLL1 CPU)      | RW   | - | - | Х       |
| 5   |     | M Div Bit 5 |                       | RW   | - | - | Х       |
| 4   |     | M Div Bit 4 |                       | RW   | - | - | Х       |
| 3   |     | M Div Bit 3 |                       | RW   | - | - | Х       |
| 2   |     | M Div Bit 2 |                       | RW   | - | - | Х       |
| 1   |     | M Div Bit 1 |                       | RW   | - | - | Х       |
| 0   |     | M Div Bit 0 |                       | RW   | - | - | Х       |

### Byte 23 CPU M/N Programming

| Bit | Pin | Name        | Description           | Туре | 0 | 1 | Default |
|-----|-----|-------------|-----------------------|------|---|---|---------|
| 7   |     | N Div bit 7 | PLL 1 M/N Programming | RW   | - | - | Х       |
| 6   |     | N Div bit 6 | (Intel PLL1 CPU)      | RW   | - | - | Х       |
| 5   |     | N Div bit 5 |                       | RW   | - | - | Х       |
| 4   |     | N Div bit 4 |                       | RW   | - | - | Х       |
| 3   |     | N Div bit 3 |                       | RW   | - | - | Х       |
| 2   |     | N Div bit 2 |                       | RW   | - | - | Х       |
| 1   |     | N Div bit 1 |                       | RW   | - | - | Х       |
| 0   |     | N Div Bit 0 |                       | RW   | - | - | Х       |

## Bytes 24-62 Reserved

Byte 63 Special Power Management Features (Rev P Silicon and Higher)

| Bit | Pin | Name            | Description                       | RW | 0   | 1  | Default |
|-----|-----|-----------------|-----------------------------------|----|-----|----|---------|
| 7   |     | Reserved        |                                   | RW |     |    | 0       |
| 6   |     | Reserved        |                                   | RW |     |    | 0       |
| 5   |     | Reserved        |                                   | RW |     |    | 0       |
| 4   |     | Reserved        |                                   | RW |     |    | 0       |
| 3   |     | Reserved        |                                   | RW |     |    | 0       |
| 2   |     | Reserved        |                                   | RW |     |    | 0       |
| 1   |     | SATA PLL        | Power Management Feature          | RW | off | on | Note    |
| 0   |     | XTAL PD Control | Controls XTAL on/off in legacy PD | RW | off | on | 1       |

Note: Default is "off" for Rev P Silicon and higher.

\*Accessing any SMBus bytes not shown in the datasheet could result in incorrect clock functions.

## **Test Clarification Table**

| Comments                                                                                                                                                                                                                                                     | HW                          |                                  | SW                        |                          |               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------|---------------------------|--------------------------|---------------|
|                                                                                                                                                                                                                                                              | FSLC/<br>TEST_SEL<br>HW PIN | FSLB/<br>TEST_MOD<br>E<br>HW PIN | TEST<br>ENTRY BIT<br>B9b3 | REF/N or<br>HI-Z<br>B9b4 | OUTPUT        |
|                                                                                                                                                                                                                                                              | <2.0V                       | X                                | 0                         | 0                        | NORMAL        |
| Power-up w/ TEST_SEL = 1 to enter test mode                                                                                                                                                                                                                  | >2.0V<br>>2.0V              | 0                                | X<br>X                    | 0<br>1                   | HI-Z<br>REF/N |
| Cycle power to disable test mode<br>FSLC./TEST_SEL>3-level latched input                                                                                                                                                                                     | >2.0V                       | 1                                | Х                         | 0                        | REF/N         |
| If power-up w/ V>2.0V then use TEST_SEL<br>If power-up w/ V<2.0V then use FSLC<br>FSLB/TEST_MODE>low Vth input<br>TEST_MODE is a real time input                                                                                                             | >2.0V                       | 1                                | x                         | 1                        | REF/N         |
|                                                                                                                                                                                                                                                              | <2.0V                       | Х                                | 1                         | 0                        | HI-Z          |
| If TEST_SEL HW pin is 0 during power-up,<br>test mode can be invoked through B9b3.<br>If test mode is invoked by B9b3, only B9b4<br>is used to select HI-Z or REF/N<br>FSLB/TEST_Mode pin is not used.<br>Cycle power to disable test mode, one shot control | <2.0V                       | х                                | 1                         | 1                        | REF/N         |

B9b3: 1= ENTER TEST MODE, Default = 0 (NORMAL OPERATION)

B9b4: 1= REF/N, Default = 0 (HI-Z)

## Datasheet



| (240 mil) (20 mil) |                   |          |                   |      |  |
|--------------------|-------------------|----------|-------------------|------|--|
|                    | In Millimeters    |          | In Inches         |      |  |
| SYMBOL             | COMMON DIMENSIONS |          | COMMON DIMENSIONS |      |  |
|                    | MIN               | MAX      | MIN               | MAX  |  |
| А                  |                   | 1.20     | -                 | .047 |  |
| A1                 | 0.05              | 0.15     | .002              | .006 |  |
| A2                 | 0.80              | 1.05     | .032              | .041 |  |
| b                  | 0.17              | 0.27     | .007              | .011 |  |
| С                  | 0.09              | 0.20     | .0035             | .008 |  |
| D                  | SEE VAF           | RIATIONS | SEE VARIATIONS    |      |  |
| E                  | 8.10 E            | BASIC    | 0.319 BASIC       |      |  |
| E1                 | 6.00              | 6.20     | .236              | .244 |  |
| е                  | 0.50 BASIC        |          | 0.020 BASIC       |      |  |
| L                  | 0.45              | 0.75     | .018              | .030 |  |
| Ν                  | SEE VARIATIONS    |          | SEE VARIATIONS    |      |  |
| α                  | 0°                | 8°       | 0°                | 8°   |  |
| aaa                |                   | 0.10     |                   | .004 |  |

6.10 mm. Body, 0.50 mm. Pitch TSSOP

### VARIATIONS

| NI | D mm. |       | D (inch) |      |
|----|-------|-------|----------|------|
| N  | MIN   | MAX   | MIN      | MAX  |
| 64 | 16.90 | 17.10 | .665     | .673 |

Reference Doc.: JEDEC Publication 95, MO-153

10-0039

## **Ordering Information**

| Part / Order Number | Shipping Packaging | Package      | Temperature |
|---------------------|--------------------|--------------|-------------|
| 9LPR501SGLF         | Tubes              | 64-pin TSSOP | 0 to +70° C |
| 9LPR501SGLFT        | Tape and Reel      | 64-pin TSSOP | 0 to +70° C |

"LF" suffix to the part number are the Pb-Free configuration, RoHS compliant.

## **Revision History**

| Rev. | Issue Date | Description                                                                 | Page #    |  |
|------|------------|-----------------------------------------------------------------------------|-----------|--|
|      |            | 1. Updated Byte 11                                                          |           |  |
| Α    | 10/27/2006 | 2. Updated IDD to CK505 Rev 1.0 spec                                        | Various   |  |
| в    | 2/9/2007   | 1. Updated M/N programming bytes, removed the +2 and +8                     | Various   |  |
| В    | 2/9/2007   | 2. Added Byte 63 bit 1 for SATA PLL on/off                                  | vanous    |  |
| С    | 4/3/2007   | Added Bytes 24-25.                                                          | 20        |  |
| D    | 4/17/2007  | Removed SSOP Ordering Information.                                          | 22        |  |
| E    | 8/8/2007   | Release to Final.                                                           | -         |  |
| F    | 11/6/2007  | Added Foot Note on SMBus.                                                   | 19        |  |
|      |            | 1. Updated PLL3 Configuration Table.                                        |           |  |
| G    | 2/19/2008  | 2. Updated Power Management Table to Show Hi-z on latched inputs during PD. | 11        |  |
| Н    | 3/7/2008   | Updated Electrical Characteristics                                          | 7-9       |  |
| J    | 12/5/2008  | Added Electrical table for SE1/2-25MHz.                                     | 10        |  |
| K    | 2/9/2009   | Updated Electrical Characteristics                                          | Various   |  |
| L    | 2/23/2009  | Updated note under Byte 63 table.                                           | 18        |  |
| М    | 11/24/2009 | Removed references to PCIe Gen2 performance.                                | Various   |  |
|      |            | 1. Updated Electrical Tables to latest CK505 format                         |           |  |
|      |            | 2. Added note to SMBus byte 0 clarifying interaction with Byte 63           | 7-10, 14, |  |
| Ν    | 5/19/2011  | 3. Updated ordering information to latest format                            | 20        |  |

Innovate with IDT and accelerate your future networks. Contact:

# www.IDT.com

### For Sales

800-345-7015 408-284-8200 Fax: 408-284-2775

## For Tech Support

408-284-6578 pcclockhelp@idt.com

## **Corporate Headquarters**

Integrated Device Technology, Inc. 6024 Silver Creek Valley Road San Jose, CA 95138 United States 800 345 7015 +408 284 8200 (outside U.S.)

### Asia Pacific and Japan

Integrated Device Technology Singapore (1997) Pte. Ltd. Reg. No. 199707558G 435 Orchard Road #20-03 Wisma Atria Singapore 238877 +65 6 887 5505

### Europe

IDT Europe, Limited Prime House Barnett Wood Lane Leatherhead, Surrey United Kingdom KT22 7DE +44 1372 363 339



© 2006 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT and the IDT logo are trademarks of Integrated Device Technology, Inc. All other brands, product names and marks are or may be trademarks or registered trademarks used to identify products or services of their respective owners. Printed in USA