

8 OUTPUT LOW-POWER PCIE GEN1-2-3 CLOCK GENERATOR W/ZO=1000HMS

9FGL839

Description

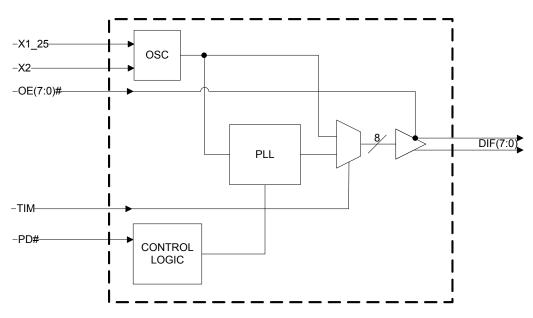
The 9FGL839 is an 8-output clock generator for PCI Express Gen1, Gen2, and Gen3 applications. It has integrated terminations providing direction connection to 100ohm transmission lines and saving 32 resistors compared to standard HCSL outputs. The 9FGL839 supports Common, Data and Separate Reference no-Spread (SRnS) PCIe clock architectures.

Recommended Application

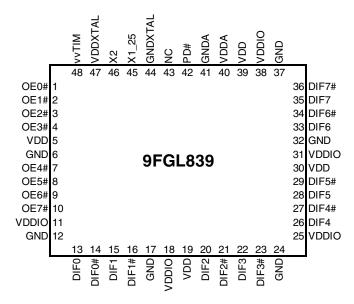
100MHz PCIe Gen1-2-3 clock generator

Output Features

• 8 - Low-Power (LP) HCSL output pairs @ 100MHz


Features/Benefits

- Integrated terminations; save 32 resistors compared to standard HCSL outputs
- LP-HCSL outputs; support separate VDDIO rail and 130mW typical power consumption
- 8 OE# pins; Hardware control of each output
- 25MHz crystal input; exact synthesis
- 100MHz operation; supports PCIe and SATA applications
- VDDIO; allows outputs to run from lower voltage rail to save power
- OE# pins have 1.5V high input threshold; direct interface to 1.8-3.3V systems
- Packaged in 48-pin VFQFPN


Key Specifications

- <130mW power consumption (typical)
- Cycle-to-cycle jitter <50ps
- Output-to-output skew <100 ps
- PCIe Gen2 phase jitter <3.0ps RMS
- PCIe Gen3 phase jitter <1.0ps RMS
- PCIe Gen3 SRnS clock phase jitter <0.7ps RMS

Block Diagram

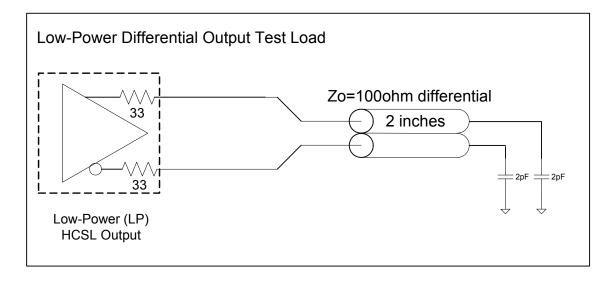
Pin Configuration

48-pin VFQFPN, 6x6 mm, 0.4mm pitch

- $v \quad \hbox{prefix indicates internal 120KOhm pull down resistor} \\$
- vv prefix indicates internal 60KOhm pull down resistor
- ^ prefix indicates internal 120KOhm pull up resistor

Power Management Table

Inputs	Control Bits/Pins	Outputs	PLL State
PD#	OE# Pin	DIFx/DIFx#	PLL State
0	Х	Low/Low	OFF
1	0	Running	ON
1	1	Low/Low	ON


MLF Power Connections Table

Pin Numbe	Pin Number								
VDDA	VDD	VDDIO	GND	Description					
40			41	Analog PLL					
47			44	XTAL					
	5		6	Inputs					
	19, 30, 39	11, 18, 25, 31, 38	12, 17, 24, 32, 37	DIF clocks					

Pin Descriptions

PIN#	PIN NAME	TYPE	DESCRIPTION
			Active low input for enabling DIF pair 0.
1	OE0#	IN	1 =disable outputs, 0 = enable outputs
	0=1"		Active low input for enabling DIF pair 1.
2	OE1#	IN	1 =disable outputs, 0 = enable outputs
	050#	INI	Active low input for enabling DIF pair 2.
3	OE2#	IN	1 =disable outputs, 0 = enable outputs
4	050#	INI	Active low input for enabling DIF pair 3.
4	OE3#	IN	1 =disable outputs, 0 = enable outputs
5	VDD	PWR	Power supply, nominal 3.3V
6	GND	PWR	Ground pin.
7	OE4#	IN	Active low input for enabling DIF pair 4
	OL-111	11.4	1 =disable outputs, 0 = enable outputs
8	OE5#	IN	Active low input for enabling DIF pair 5.
	02011	11.4	1 =disable outputs, 0 = enable outputs
9	OE6#	IN	Active low input for enabling DIF pair 6.
	0_0		1 =disable outputs, 0 = enable outputs
10	OE7#	IN	Active low input for enabling DIF pair 7.
	LID DIG		1 =disable outputs, 0 = enable outputs
11	VDDIO	PWR	Power supply for differential outputs
12	GND	PWR	Ground pin.
13	DIF0	OUT	Differential true clock output
14	DIF0#	OUT	Differential Complementary clock output
15	DIF1		Differential true clock output
16 17	DIF1# GND	OUT PWR	Differential Complementary clock output Ground pin.
18	VDDIO	PWR	Power supply for differential outputs
19	VDD	PWR	Power supply, nominal 3.3V
20	DIF2	OUT	Differential true clock output
21	DIF2#	OUT	Differential Complementary clock output
22	DIF3	OUT	Differential true clock output
23	DIF3#	OUT	Differential Complementary clock output
24	GND	PWR	Ground pin.
25	VDDIO	PWR	Power supply for differential outputs
26	DIF4	OUT	Differential true clock output
27	DIF4#	OUT	Differential Complementary clock output
28	DIF5	OUT	Differential true clock output
29	DIF5#	OUT	Differential Complementary clock output
30	VDD	PWR	Power supply, nominal 3.3V
31	VDDIO	PWR	Power supply for differential outputs
32	GND	PWR	Ground pin.
33	DIF6	OUT	Differential true clock output
34	DIF6#	OUT	Differential Complementary clock output
35	DIF7	OUT	Differential true clock output
36	DIF7#	OUT	Differential Complementary clock output
37	GND	PWR	Ground pin.
38	VDDIO	PWR	Power supply for differential outputs
39	VDD	PWR	Power supply, nominal 3.3V
40	VDDA	PWR	3.3V power for the PLL core.
41	GNDA	PWR	Ground pin for the PLL core.
40	PD#	INI	Asynchronous active low input pin used to power down the device. The internal clocks
42	π σπ	IN	are disabled and the VCO and the crystal osc. (if any) are stopped.
43	NC	N/A	No Connection.
44	GNDXTAL	PWR	GND for XTAL
45	X1_25	IN	Crystal input, Nominally 25.00MHz.
46	X2	OUT	Crystal output.
47	VDDXTAL	PWR	Power supply for XTAL, nominal 3.3V
			This pin is the Test Input Mode pin. A '0' on this pin puts the part in normal operating
48	vvTIM	IN	mode. A '1' on this pin puts the part in Test Input Mode, bypassing the PLL. This pin
			should be either pulled to ground with an external 10Kohm resistor or grounded
Ì	1	Ī	

Test Loads

9FGL839

Absolute Maximum Ratings

Stresses above the ratings listed below can cause permanent damage to the 9FGL839. These ratings, which are standard values for IDT commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
3.3V Core Supply Voltage	VDD, VDDA	VDD for core logic and PLL			4.6	V	1,2
IO Supply Voltage	VDDIO	VDD for differential IO			4.6	V	1,2
Input Low Voltage	V_{IL}		GND-0.5			V	1
Input High Voltage	V_{IH}	Except for SMBus interface			V _{DD} +0.5	V	1
Input High Voltage	V _{IHSMB}	SMBus clock and data pins (if present)			5.5	V	1
Storage Temperature	Ts		-65		150	°C	1
Junction Temperature	Tj				125	°C	1
Input ESD protection	ESD prot	Human Body Model	2000			V	1

¹Guaranteed by design and characterization, not 100% tested in production.

Electrical Characteristics-Input/Supply/Common Parameters

 $T_A = T_{COM \text{ or }} T_{IND}$; Supply Voltage $V_{DD}/V_{DDA} = 3.3 \text{ V } +/-5\%$, VDDIO = 1.05V to 3.3V +/-5%

	0 ,:	•					
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Ambient Operating	T _{COM}	Commmercial range	0		70	°C	1
Temperature	T _{IND}	Industriall range	-40		85	°C	1
Input High Voltage	V_{IHOE}	OE# pins	1.5		$V_{DD} + 0.3$	٧	1
Input High Voltage	V _{IH}	Single-ended inputs, except SMBus, low threshold and tri-level inputs	2		V _{DD} + 0.3	٧	1
Input Low Voltage	V _{IL}	Single-ended inputs, except SMBus, low threshold and tri-level inputs			0.8	٧	1
	I _{IN}	Single-ended inputs, $V_{IN} = GND$, $V_{IN} = VDD$	-5	+/-3	5	uA	1
Input Current	I _{INP}	Single-ended inputs $V_{\text{IN}} = 0 \text{ V}$; Inputs with internal pull-up resistors $V_{\text{IN}} = \text{VDD}$; Inputs with internal pull-down resistors	-200	+/-75	200	uA	1
Input Frequency	Fin	$V_{DDA,}V_{DD}$		25		MHz	2
Pin Inductance	L_{pin}			6	7	nΗ	1
0 "	C _{IN}	Logic Inputs	1.5	4	5	pF	1
Capacitance	C _{OUT}	Output pin capacitance		5	6	pF	1
I CIK STADIIIZATION I Letar I '		From V _{DD} Power-Up and after input clock stabilization or de-assertion of PD# to 1st clock		0.5	1	ms	1,2
()E#Latency type=""		DIF start after OE# assertion DIF stop after OE# deassertion	1	2	4	clocks	1
Tfall	t _F	Fall time of control inputs		·	10	ns	1,2
Trise	t _R	Rise time of control inputs			10	ns	1,2

¹Guaranteed by design and characterization, not 100% tested in production.

² Operation under these conditions is neither implied nor guaranteed.

²Control input must be monotonic from 20% to 80% of input swing.

³Time from deassertion until outputs are >200 mV

Electrical Characteristics-DIF LP-HCSL Outputs

 $T_A = T_{COM \text{ or }} T_{IND}$; Supply Voltage $V_{DD/} V_{DDA} = 3.3 \text{ V +/-5\%}$, VDDIO = 1.05V to 3.3V +/-5%

PARAMETER	SYMBOL	CONDITIONS		TYP	MAX	UNITS	NOTES
Slew rate	Trf	Scope averaging on	1	2	3	V/ns	1, 2, 3
Slew rate matching	ΔTrf	Slew rate matching, Scope averaging on		7.6	20	%	1, 2, 4
Voltage High	VHigh	Statistical measurement on single-ended signal using oscilloscope math function. (Scope	480	590	850	mV	1
Voltage Low	VLow	averaging on)		9	150	1110	1
Max Voltage	Vmax	Measurement on single ended signal using		609	1150	mV	1
Min Voltage	Vmin	absolute value. (Scope averaging off)	-300	-19		IIIV	1
Vswing	Vswing	Scope averaging off	300	1162		mV	1, 2
Crossing Voltage (abs)	Vcross_abs	Scope averaging off	250	292	550	mV	1, 5
Crossing Voltage (var)	Δ-Vcross	Scope averaging off		23	140	mV	1, 6

 $^{^{1}}$ Guaranteed by design and characterization, not 100% tested in production. $C_L = 2pF$. (100 Ω differential trace impedance).

Electrical Characteristics-Current Consumption

 $T_A = T_{COM \text{ or }} T_{IND}$; Supply Voltage $V_{DD}/V_{DDA} = 3.3 \text{ V } +/-5\%$, VDDIO = 1.05V to 3.3V +/-5%

	A COM OF THE	0 00, 00,	,					
Operating Current		CONDITIONS	MIN	TYP	MAX	UNITS	NOTES	
		I _{DDVDD, VDDA}	$C_L = 2pF$; VDD/VDDA rail, all outputs on		35	42	mA	1
		I _{DDVDDIO}	$C_L = 2pf$; VDDIO rail, all outputs on		14	20	mA	1
	Powerdown Current	I _{DDVDD} , _{VDDA}	Power Down, VDD/VDDA Rail		5.3	8	mA	1
L	1 owerdown Ganeric	I _{DDVDDIO}	Power Down, VDDIO Rail		0.001	0.1	mA	1

¹Guaranteed by design and characterization, not 100% tested in production.

Electrical Characteristics-Skew and Differential Jitter Parameters

 $T_{A} = T_{COM \, or} \, T_{IND}; \, Supply \, \, Voltage \, \, V_{DD/} V_{DDA} = 3.3 \, \, V \, \, +/-5\%, \, \, VDDIO = 1.05V \, \, to \, 3.3V \, \, +/-5\%$

PARAMETER	SYMBOL	CONDITIONS		TYP	MAX	UNITS	NOTES
DIF{x:0]	t _{SKEW_ALL}	Output-to-Output Skew across all outputs		50	100	ps	1,2,3
Duty Cycle	t _{DC}	Measured differentially, PLL Mode		49.4	55	%	1,3
Jitter, Cycle to cycle	t _{jcyc-cyc}	PLL mode		17.5	50	ps	1,3,4

Notes for preceding table:

² Measured from differential waveform

³ Slew rate is measured through the Vswing voltage range centered around differential 0V. This results in a +/-150mV window around differential 0V.

⁴ Matching applies to rising edge rate of Clock / falling edge rate of Clock#. It is measured in a +/-75mV window centered on the average cross point where Clock rising meets Clock# falling. The median cross point is used to calculate the voltage thresholds the oscilloscope uses for the edge rate calculations.

⁵ Vcross is defined as voltage where Clock = Clock# measured on a component test board and only applies to the differential rising edge (i.e. Clock rising and Clock# falling).

⁶ The total variation of all Vcross measurements in any particular system. Note that this is a subset of V_cross_min/max (V_cross absolute) allowed. The intent is to limit Vcross induced modulation by setting V_cross_delta to be smaller than V_cross abs.

¹ Measured into fixed 2 pF load cap. Input to output skew is measured at the first output edge following the corresponding input.

² Measured from differential cross-point to differential cross-point. This parameter can be tuned with external feedback path, if present.

³ Guaranteed by design and characterization, not 100% tested in production.

⁴ Measured from differential waveform

Electrical Characteristics-Phase Jitter Parameters

 $T_{A} = T_{COM \, or} \, T_{IND}; \, Supply \, \, Voltage \, \, V_{DD/} V_{DDA} = 3.3 \, \, V \, \, +/-5\%, \, \, VDDIO = 1.05V \, \, to \, \, 3.3V \, \, +/-5\%$

PARAMETER	SYMBOL	CONDITIONS		TYP	MAX	INDUSTRY LIMIT	UNITS	Notes
	t _{iphPCleG1}	PCIe Gen 1		23	40	86	ps (p-p)	1,2,3
Phase Jitter		PCIe Gen 2 Lo Band 10kHz < f < 1.5MHz		0.6	0.8	3	ps (rms)	1,2
	^I jphPCleG2	PCIe Gen 2 High Band 1.5MHz < f < Nyquist (50MHz)		1.9	2.5	3.1	ps (rms)	1,2
	t _{jphPCleG3COM}	PCIe Gen3, (Common Clock and Data Clock)		0.4	0.6	1	ps (rms)	1,2
	t _{jphPCleG3}	PCIe Gen3 (Separate Reference no Spread - SRnS)		0.4	0.6	0.7	ps (rms)	1,2

¹ Applies to all outputs.

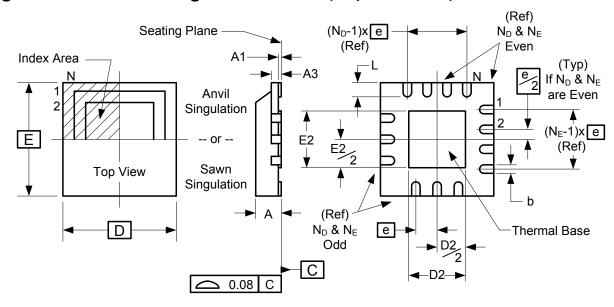
Clock Periods-Differential Outputs

		Measurement Window								
	Center	1 Clock	1us	0.1s	0.1s	0.1s	1us	1 Clock		
SSC OFF	Freq. MHz	-c2c jitter AbsPer Min	-SSC Short-Term Average Min	- ppm Long-Term Average Min	0 ppm Period Nominal	+ ppm Long-Term Average Max	+SSC Short-Term Average Max	+c2c jitter AbsPer Max	Units	Notes
DIF	100.00	9.91450		9.99950	10.00000	10.00050		10.08550	ns	1,2,3

² See http://www.pcisig.com for complete specs

³ Sample size of at least 100K cycles. This figures extrapolates to 108ps pk-pk @ 1M cycles for a BER of 1-12.

Marking Diagrams


Notes:

- 1. "LOT" is the lot number.
- 2. YYWW is the last two digits of the year and week that the part was assembled.
- 3. "L" denotes RoHS compliant package.
- 4. "I" denotes industrial temperature range.
- 4. "COO" denotes country of origin.

Thermal Characteristics

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Thermal Resistance Junction to	$\theta_{\sf JA}$	Still air		34		°C/W
Ambient	$\theta_{\sf JA}$	1 m/s air flow		31		°C/W
	θ_{JA}	2 m/s air flow		29		°C/W
Thermal Resistance Junction to Case	$\theta_{\sf JC}$			31.7		°C/W

Package Outline and Package Dimensions (48-pin VFQFPN)

	Millim	eters	
Symbol	Min	Max	
Α	0.8	1.0	
A1	0 0.05		
A3	0.20 Re	ference	
b	0.15	0.25	
е	0.40 BASIC		
D x E BASIC	6.00 >	6.00	
D2 MIN./MAX.	4.10	4.30	
E2 MIN./MAX.	4.10	4.30	
L MIN./MAX.	0.35	0.45	
N	48		
N_D	12		
N _E	12		

Ordering Information

Part / Order Number	Part / Order Number Shipping Package		IDT Package Code	Temperature	
9FGL839AKLF	Trays	48-pin VFQFPN	NDG48	0 to +70°C	
9FGL839AKLFT	Tape and Reel	48-pin VFQFPN	NDG48	0 to +70°C	
9FGL839AKILF	Trays	48-pin VFQFPN	NDG48	-40 to +85°C	
9FGL839AKILFT	Tape and Reel	48-pin VFQFPN	NDG48	-40 to +85°C	

[&]quot;LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

9FGL839

[&]quot;A" is the device revision designator (will not correlate with the datasheet revision).

Revision History

Rev.	Issuer	Issue Date	Description	Page #
А	RDW	1/6/2012	Updated Features/Benefits Updated Power Connections Table Updated Electrical Tables to Final, removed references to 125M Adding mark information and Thermal Data	
В	RDW	7/21/2014	 1a. Updated DS title from "Frequency Synthesizer" to "Clock Generator" and updated "PCIe Gen2/3" to "PCIe Gen1-2-3". 1b. Updated general description and features/benefits 2. Updated IDDVDD, VDDA max parameter from 40mA to 42mA. 3. Updated IDDVDD, VDDA power down max parameter from 6mA to 8mA. 4. Reduced max cycle to cycle jitter from 85ps to 50ps. 5. Added INDUSTRY LIMIT to phase jitter table and specified MAX separately. Added separate line for SRnS spec. 6. Reduced VHigh min from 500mV to 480mV. Min Vswing is still >1000mV against PCIe SIG 300mV limit 	1, 5-8

Innovate with IDT and accelerate your future networks. Contact:

www.IDT.com

For Sales

800-345-7015 408-284-8200 Fax: 408-284-2775 For Tech Support

www.idt.com/go/clockhelp pcclockhelp@idt.com

Corporate Headquarters

Integrated Device Technology, Inc. www.idt.com

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

IDT (Integrated Device Technology):
9FGL839AKLFT 9FGL839AKILF 9FGL839AKILFT