DATA SHEET ### **General Description** The ICS8530-01 is a low skew, 1-to-16 Differential-to-3.3V LVPECL Fanout Buffer. The CLK, nCLK pair can accept most standard differential input levels. The high gain differential amplifier accepts peak-to-peak input voltages as small as 150mV as long as the common mode voltage is within the specified minimum and maximum range. Guaranteed output and part-to-part skew characteristics make the ICS8530-01 ideal for those clock distribution applications demanding well defined performance and repeatability. #### **Features** - Sixteen differential 3.3V LVPECL outputs - · CLK, nCLK input pair - CLK, nCLK pair can accept the following differential input levels: LVPECL, LVDS, LVHSTL, HCSL, SSTL - Maximum output frequency: 500MHz - Translates any single-ended input signal to 3.3V LVPECL levels with a resistor bias on nCLK input - Output skew: 75ps (maximum) - Part-to-part skew: 305ps (maximum) - Additive phase jitter, RMS: 0.03ps (typical) - Full 3.3V supply voltage - 0°C to 70°C ambient operating temperature - Available in both standard (RoHS 5) and lead-free (RoHS 6) packages ### **Block Diagram** ### **Pin Assignment** ICS8530-01 48-Lead LQFP 7mm x 7mm x 1.4mm package body Y Package Top View 1 **Table 1. Pin Descriptions** | Number | Name | T | уре | Description | |-------------------------------|------------------|--------|----------|--| | 1, 11, 14, 24, 25, 35, 38, 48 | V _{cco} | Power | | Output supply pins. | | 2, 3 | Q11, nQ11 | Output | | Differential output pair. LVPECL interface levels. | | 4, 5 | Q10, nQ10 | Output | | Differential output pair. LVPECL interface levels. | | 6, 19, 30, 43 | V _{EE} | Power | | Negative supply pins. | | 7, 8 | Q9, nQ9 | Output | | Differential output pair. LVPECL interface levels. | | 9, 10 | Q8, nQ8 | Output | | Differential output pair. LVPECL interface levels. | | 12, 13 | V _{CC} | Power | | Power supply pins. | | 15, 16 | Q7, nQ7 | Output | | Differential output pair. LVPECL interface levels. | | 17, 18 | Q6, nQ6 | Output | | Differential output pair. LVPECL interface levels. | | 20, 21 | Q5, nQ5 | Output | | Differential output pair. LVPECL interface levels. | | 22, 23 | Q4, nQ4 | Output | | Differential output pair. LVPECL interface levels. | | 26, 27 | Q3, nQ3 | Output | | Differential output pair. LVPECL interface levels. | | 28, 29 | Q2, nQ2 | Output | | Differential output pair. LVPECL interface levels. | | 31, 32 | Q1, nQ1 | Output | | Differential output pair. LVPECL interface levels. | | 33, 34 | Q0, nQ0 | Output | | Differential output pair. LVPECL interface levels. | | 36 | CLK | Input | Pulldown | Non-inverting differential clock input. | | 37 | nCLK | Input | Pullup | Inverting differential clock input. | | 39, 40 | Q15, nQ15 | Output | | Differential output pair. LVPECL interface levels. | | 41, 42 | Q14, nQ14 | Output | | Differential output pair. LVPECL interface levels. | | 44, 45 | Q13, nQ13 | Output | | Differential output pair. LVPECL interface levels. | | 46, 47 | Q12, nQ12 | Output | | Differential output pair. LVPECL interface levels. | NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values. ### **Table 2. Pin Characteristics** | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |-----------------------|-------------------------|-----------------|---------|---------|---------|-------| | C _{IN} | Input Capacitance | | | 3 | | pF | | R _{PULLUP} | Input Pullup Resistor | | | 51 | | kΩ | | R _{PULLDOWN} | Input Pulldown Resistor | | | 51 | | kΩ | ### **Function Table** **Table 3. Clock Input Function Table** | Inputs | | Ou | tputs | | | |----------------|----------------|---------|----------|------------------------------|---------------| | CLK | nCLK | Q[0:15] | nQ[0:15] | Input to Output Mode | Polarity | | 0 | 1 | LOW | HIGH | Differential to Differential | Non-Inverting | | 1 | 0 | HIGH | LOW | Differential to Differential | Non-Inverting | | 0 | Biased; NOTE 1 | LOW | HIGH | Single-Ended to Differential | Non-Inverting | | 1 | Biased; NOTE 1 | HIGH | LOW | Single-Ended to Differential | Non-Inverting | | Biased; NOTE 1 | 0 | HIGH | LOW | Single-Ended to Differential | Inverting | | Biased; NOTE 1 | 1 | LOW | HIGH | Single-Ended to Differential | Inverting | NOTE 1: Refer to the Application Information section, Wiring the Differential Input to Accept single-ended Levels. # **Absolute Maximum Ratings** NOTE: Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability. | Item | Rating | |--|---------------------------------| | Supply Voltage, V _{CC} | 4.6V | | Inputs, V _I | -0.5V to V _{CC} + 0.5V | | Outputs, I _O Continuous Current Surge Current | 50mA
100mA | | Package Thermal Impedance, θ_{JA} | 53.9°C/W (0 mps) | | Storage Temperature, T _{STG} | -65°C to 150°C | ### **DC Electrical Characteristics** Table 4A. Power Supply DC Characteristics, $V_{CC} = V_{CCO} = 3.3V \pm 5\%$, $V_{EE} = 0V$, $T_A = 0^{\circ}C$ to $70^{\circ}C$ | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |------------------|-----------------------|-----------------|---------|---------|---------|-------| | V _{CC} | Power Supply Voltage | | 3.135 | 3.3 | 3.465 | V | | V _{CCO} | Output Supply Voltage | | 3.135 | 3.3 | 3.465 | V | | I _{EE} | Power Supply Current | | | | 146 | mA | Table 4B. Differential Input DC Characteristics, $V_{CC} = V_{CCO} = 3.3V \pm 5\%$, $V_{EE} = 0V$, $T_A = 0^{\circ}C$ to $70^{\circ}C$ | Symbol | Parameter | | Test Conditions | Minimum | Typical | Maximum | Units | |-----------------------------------|--------------------------------------|------|--------------------------------|-----------------------|---------|------------------------|-------| | | CLK | | $V_{IN} = V_{CC} = 3.465V$ | | | 150 | μΑ | | I IH | Input High Current | nCLK | $V_{IN} = V_{CC} = 3.465V$ | | | 5 | μΑ | | I _{IL} Input Low Current | Input Low Current | CLK | $V_{IN} = 0V, V_{CC} = 3.465V$ | -5 | | | μA | | | Input Low Current | nCLK | $V_{IN} = 0V, V_{CC} = 3.465V$ | -150 | | | μΑ | | V _{PP} | Peak-to-Peak Input Voltage; NOTE 1 | | | 0.15 | | 1.3 | V | | V _{CMR} | Common Mode Input Voltage; NOTE 1, 2 | | | V _{EE} + 0.5 | | V _{CC} - 0.85 | V | NOTE 1: V_{IL} should not be less than -0.3V. NOTE 2: Common mode input voltage is defined as V_{IH}. Table 4C. LVPECL DC Characteristics, $V_{CC} = V_{CCO} = 3.3V \pm 5\%$, $V_{EE} = 0V$, $T_A = 0^{\circ}C$ to $70^{\circ}C$ | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |--------------------|-----------------------------------|-----------------|------------------------|---------|------------------------|-------| | V _{OH} | Output High Voltage; NOTE 1 | | V _{CCO} – 1.4 | | V _{CCO} - 0.9 | V | | V _{OL} | Output Low Voltage; NOTE 1 | | V _{CCO} - 2.0 | | V _{CCO} – 1.7 | V | | V _{SWING} | Peak-to-Peak Output Voltage Swing | | 0.6 | | 1.0 | V | NOTE 1: Outputs terminated with 50Ω to V_{CCO} – 2V. ### **AC Electrical Characteristics** Table 5. AC Electrical Characteristics, $V_{CC} = V_{CCO} = 3.3V \pm 5\%$, $V_{EE} = 0V$, $T_A = 0$ °C to 70°C | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |------------------|---|--|---------|---------|---------|-------| | f _{MAX} | Output Frequency | | | | 500 | MHz | | t _{JIT} | Buffer Additive Phase Jitter,
RMS; refer to Additive Phase
Jitter Section | 106.25MHz,
Integration Range: 12kHz – 20MHz | | 0.03 | | ps | | t _{PD} | Propagation Delay; NOTE 1 | <i>f</i> ≤ 500MHz | 1 | | 2 | ns | | tsk(o) | Output Skew; NOTE 2, 3 | | | | 75 | ps | | tsk(pp) | Part-to-Part Skew; NOTE 2, 4 | | | 148 | 305 | ps | | t_R / t_F | Output Rise/ Fall Time | 20% to 80% @ 50MHz | 300 | | 750 | ps | | odc | Output Duty Cycle | | 47 | 50 | 53 | % | NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. Device will meet specifications after thermal equilibrium has been reached under these conditions. NOTE All parameters measured at 250MHz unless noted otherwise. NOTE 1: Measured from the differential input crossing point to the differential output crossing point. NOTE 2: This parameter is defined in accordance with JEDEC Standard 65. NOTE 3: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at the differential cross points. NOTE 4: Defined as skew between outputs on different devices operating at the same supply voltage, same temperature, same frequency and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at the differential cross points. ### **Additive Phase Jitter** The spectral purity in a band at a specific offset from the fundamental compared to the power of the fundamental is called the *dBc Phase Noise*. This value is normally expressed using a Phase noise plot and is most often the specified plot in many applications. Phase noise is defined as the ratio of the noise power present in a 1Hz band at a specified offset from the fundamental frequency to the power value of the fundamental. This ratio is expressed in decibels (dBm) or a ratio of the power in the 1Hz band to the power in the fundamental. When the required offset is specified, the phase noise is called a **dBc** value, which simply means dBm at a specified offset from the fundamental. By investigating jitter in the frequency domain, we get a better understanding of its effects on the desired application over the entire time record of the signal. It is mathematically possible to calculate an expected bit error rate given a phase noise plot. As with most timing specifications, phase noise measurements has issues relating to the limitations of the equipment. Often the noise floor of the equipment is higher than the noise floor of the device. This is illustrated above. The device meets the noise floor of what is shown, but can actually be lower. The phase noise is dependent on the input source and measurement equipment. ### **Parameter Measurement Information** #### 3.3V Output Load AC Test Circuit **Differential Input Level** **Output Skew** Part-to-Part Skew Output Duty Cycle/Pulse Width/Period **Propagation Delay** ## **Parameter Measurement Information, continued** **Output Rise/Fall Time** # **Applications Information** ## **Recommendations for Unused Output Pins** ### **Outputs:** #### **LVPECL Outputs** The unused LVPECL output pair can be left floating. We recommend that there is no trace attached. Both sides of the differential output pair should either be left floating or terminated. #### Wiring the Differential Input to Accept Single-Ended Levels Figure 1 shows how a differential input can be wired to accept single ended levels. The reference voltage $V_{REF} = V_{CC}/2$ is generated by the bias resistors R1 and R2. The bypass capacitor (C1) is used to help filter noise on the DC bias. This bias circuit should be located as close to the input pin as possible. The ratio of R1 and R2 might need to be adjusted to position the V_{REF} in the center of the input voltage swing. For example, if the input clock swing is 2.5V and $V_{CC} = 3.3V$, R1 and R2 value should be adjusted to set V_{REF} at 1.25V. The values below are for when both the single ended swing and V_{CC} are at the same voltage. This configuration requires that the sum of the output impedance of the driver (Ro) and the series resistance (Rs) equals the transmission line impedance. In addition, matched termination at the input will attenuate the signal in half. This can be done in one of two ways. First, R3 and R4 in parallel should equal the transmission line impedance. For most 50Ω applications, R3 and R4 can be 100Ω . The values of the resistors can be increased to reduce the loading for slower and weaker LVCMOS driver. When using single-ended signaling, the noise rejection benefits of differential signaling are reduced. Even though the differential input can handle full rail LVCMOS signaling, it is recommended that the amplitude be reduced. The datasheet specifies a lower differential amplitude, however this only applies to differential signals. For single-ended applications, the swing can be larger, however V $_{\rm IL}$ cannot be less than -0.3V and V $_{\rm IH}$ cannot be more than Vcc + 0.3V. Though some of the recommended components might not be used, the pads should be placed in the layout. They can be utilized for debugging purposes. The datasheet specifications are characterized and guaranteed by using a differential signal. Figure 1. Recommended Schematic for Wiring a Differential Input to Accept Single-ended Levels #### **Differential Clock Input Interface** The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL and other differential signals. Both V_{SWING} and V_{OH} must meet the V_{PP} and V_{CMR} input requirements. Figures 2A to 2F show interface examples for the CLK/nCLK input driven by the most common driver types. The input interfaces suggested here are examples only. Please consult with the vendor of the driver component to confirm the driver termination requirements. For example in *Figure 2A*, the input termination applies for IDT's LVHSTL drivers. If you are using an LVHSTL driver from another vendor, use their termination recommendation. Figure 2A. CLK/nCLK Input Driven by an IDT LVHSTL Driver Figure 2C. CLK/nCLK Input Driven by a 3.3V LVPECL Driver Figure 2E. CLK/nCLK Input Driven by a 3.3V HCSL Driver Figure 2B. CLK/nCLK Input Driven by a 3.3V LVPECL Driver Figure 2D. CLK/nCLK Input Driven by a 3.3V LVDS Driver Figure 2F. CLK/nCLK Input Driven by a 2.5V SSTL Driver ### **Termination for 3.3V LVPECL Outputs** The clock layout topology shown below is a typical termination for LVPECL outputs. The two different layouts mentioned are recommended only as guidelines. The differential outputs are low impedance follower outputs that generate ECL/LVPECL compatible outputs. Therefore, terminating resistors (DC current path to ground) or current sources must be used for functionality. These outputs are designed to drive 50Ω 3.3V $Z_{o} = 50\Omega$ = VPECL $Z_{o} = 50\Omega$ R1 50Ω R2 $= 50\Omega$ $V_{CC} - 2V$ Figure 3A. 3.3V LVPECL Output Termination transmission lines. Matched impedance techniques should be used to maximize operating frequency and minimize signal distortion. *Figures 3A and 3B* show two different layouts which are recommended only as guidelines. Other suitable clock layouts may exist and it would be recommended that the board designers simulate to guarantee compatibility across all printed circuit and clock component process variations. Figure 3B. 3.3V LVPECL Output Termination #### **Power Considerations** This section provides information on power dissipation and junction temperature for the ICS8530-01. Equations and example calculations are also provided. #### 1. Power Dissipation. The total power dissipation for the ICS8530-01 is the sum of the core power plus the power dissipated in the load(s). The following is the power dissipation for $V_{CC} = 3.3V + 5\% = 3.465V$, which gives worst case results. NOTE: Please refer to Section 3 for details on calculating power dissipated in the load. - Power (core)_{MAX} = V_{CC MAX} * I_{EE MAX} = 3.465V * 146mA = 505.89mW - Power (outputs)_{MAX} = 30mW/Loaded Output pair If all outputs are loaded, the total power is 16 * 30mW = 480mW Total Power_MAX (3.465V, with all outputs switching) = 505.89mW + 480mW = 985.89mW #### 2. Junction Temperature. Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and it directly affects the reliability of the device. The maximum recommended junction temperature is 125°C. Limiting the internal transistor junction temperature, Tj, to 125°C ensures that the bond wire and bond pad temperature remains below 125°C. The equation for Tj is as follows: Tj = θ_{JA} * Pd_total + T_A Tj = Junction Temperature θ_{JA} = Junction-to-Ambient Thermal Resistance Pd_total = Total Device Power Dissipation (example calculation is in section 1 above) T_A = Ambient Temperature In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming no air flow and a multi-layer board, the appropriate value is 53.9°C/W per Table 6 below. Therefore, Tj for an ambient temperature of 70°C with all outputs switching is: $70^{\circ}\text{C} + 0.986\text{W} * 53.9^{\circ}\text{C/W} = 123.1^{\circ}\text{C}$. This is below the limit of 125°C . This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of board (multi-layer). Table 6. Thermal Resistance θ_{JA} for 48 Lead LQFP, Forced Convection | θ_{JA} by Velocity | | | | | | |---|----------|----------|----------|--|--| | Meters per Second | 0 | 1 | 2.5 | | | | Multi-Layer PCB, JEDEC Standard Test Boards | 53.9°C/W | 47.7°C/W | 45.0°C/W | | | #### 3. Calculations and Equations. The purpose of this section is to calculate the power dissipation for the LVPECL output pairs. LVPECL output driver circuit and termination are shown in Figure 4. Figure 4. LVPECL Driver Circuit and Termination To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination voltage of $V_{CCO} - 2V$. - For logic high, $V_{OUT} = V_{OH_MAX} = V_{CCO_MAX} 0.9V$ $(V_{CCO_MAX} - V_{OH_MAX}) = 0.9V$ - For logic low, $V_{OUT} = V_{OL_MAX} = V_{CCO_MAX} 1.7V$ $(V_{CCO_MAX} - V_{OL_MAX}) = 1.7V$ Pd_H is power dissipation when the output drives high. Pd_L is the power dissipation when the output drives low. $$Pd_{-}H = [(V_{OH_MAX} - (V_{CCO_MAX} - 2V))/R_{L}] * (V_{CCO_MAX} - V_{OH_MAX}) = [(2V - (V_{CCO_MAX} - V_{OH_MAX}))/R_{L}] * (V_{CCO_MAX} - V_{OH_MAX}) = [(2V - 0.9V)/50\Omega] * 0.9V = 19.8mW$$ $$Pd_L = [(V_{OL_MAX} - (V_{CCO_MAX} - 2V))/R_L] * (V_{COC_MAX} - V_{OL_MAX}) = [(2V - (V_{CCO_MAX} - V_{OL_MAX}))/R_L] * (V_{CCO_MAX} - V_{OL_MAX}) = [(2V - 1.7V)/50\Omega] * 1.7V = \textbf{10.2mW}$$ Total Power Dissipation per output pair = Pd_H + Pd_L = 30mW # **Reliability Information** ## Table 7. θ_{JA} vs. Air Flow Table for a 48 Lead LQFP | θ_{JA} vs. Air Flow | | | | | | |---|----------|----------|----------|--|--| | Meters per Second | 0 | 1 | 2.5 | | | | Multi-Layer PCB, JEDEC Standard Test Boards | 53.9°C/W | 47.7°C/W | 45.0°C/W | | | ### **Transistor Count** The transistor count for ICS8530-01 is: 955 ## **Package Outline and Package Dimensions** Package Outline - Y Suffix for 48 Lead LQFP Table 8. Package Dimensions for 48 Lead LQFP | JEDEC Variation: BCB - HD All Dimensions in Millimeters | | | | | | | |---|---------|------------|---------|--|--|--| | Symbol | Minimum | Nominal | Maximum | | | | | N | | 48 | | | | | | Α | | | 1.60 | | | | | A1 | 0.05 | 0.10 | 0.15 | | | | | A2 | 1.35 | 1.40 | 1.45 | | | | | b | 0.17 | 0.22 | 0.27 | | | | | С | 0.09 | | 0.20 | | | | | D&E | | 9.00 Basic | | | | | | D1 & E1 | | 7.00 Basic | | | | | | D2 & E2 | | 5.50 Ref. | | | | | | е | | 0.5 Basic | | | | | | L | 0.45 | 0.60 | 0.75 | | | | | θ | 0° | | 7° | | | | | CCC | | | 0.08 | | | | Reference Document: JEDEC Publication 95, MS-026 #### **Table 9. Ordering Information** | Part/Order Number | Marking | Package | Shipping Packaging | Temperature | |-------------------|--------------|-------------------------|--------------------|-------------| | 8530FY-01LF | ICS8530F01LF | Lead-Free, 48 Lead LQFP | Tray | 0°C to 70°C | | 8530FY-01LFT | ICS8530F01LF | Lead-Free, 48 Lead LQFP | 1000 Tape & Reel | 0°C to 70°C | NOTE: "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant. While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications, such as those requiring extended temperature ranges, high reliability or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments. # **Revision History Sheet** | Rev | Table | Page | Description of Change | Date | |-----|-------|------|---|----------| | В | | 5-6 | Updated figures. | 05/28/02 | | | | 7 | Added Termination for LVPECL Outputs section. | 03/20/02 | | В | | 2 | Pin Description table - V _{CC} description changed to "Core supply pin" from "Positive supply pin". | 10/02/02 | | | | 5 | Output Load Test Circuit diagram - corrected V_{EE} equation to read, V_{EE} = -1.3V ± 0.165V from V_{EE} = -1.3V ± 0.135V. | | | С | T2 | 2 | Pin Characteristics table - changed C _{IN} 4pF max. to 4pF typical. | | | | | 3 | Updated AMR Output rating. | | | | T4A | 3 | Power Supply table - changed I _{EE} max. from 120mA to 140mA. | 4/7/04 | | | | 6 | Updated Single Ended Signal Driving Differential Input diagram. | | | | | 7 | Added Differential Clock Input Interface section. | | | | | 8 | Power Considerations, changed I _{EE} to 140mA to reflect the Power Supply table and recalculated the equations. | | | | | | Update format throughout the data sheet. | | | С | Т9 | 12 | Added "Lead-Free" marking to Ordering Information Table. | 6/29/04 | | D | | 1 | Features section - added Additive Phase Jitter bullet. | | | | | 4 | AC Characteristics table - added tjit row. | 2/28/05 | | | T5 | 5 | Added Additive Phase Jitter section. | | | E | T4C | 3 | LVPECL DC Characteristics - changed V_{SWING} (max) limit from 850mV to 1.0V. Corrected V_{OH} (max) limit from V_{CCO} - 1.0V to V_{CCO} - 0.9V. | -// | | | | 7 | Added Recommendations for Unused Output Pins. | 5/19/06 | | | Т9 | 14 | Ordering Information Table - added lead-free note. | | | | 1 | 2 | Pin Description Table - change V _{CC} description from "Core" to "Power". | | | F | 2 | 2 | Pin Characteristics Table - change C _{IN} from 4pF typical to 3pF typical. | | | | | 3 | Absolute Maximum Rating - updated Thermal Impedance. | | | | T4A | 3 | Power Supply DC Characteristics Table - change I _{EE} from 140mA max to 146mA max. | | | | T4B | 4 | Differential DC Characteristics Table - updated notes. | | | | T5 | 4 | AC Characteristics Table - changed part-to-part skew spec and Output Rise/Fall Time spec. | | | | | 8 | Updated Wiring the Differential Input to Accept Single-ended Levels. | 11/18/10 | | | | 9 | Updated Differential Clock Input Interface. | ,, | | | | 10 | Updated Figures 3A and 3B. | | | | | 11 | Updated Power Considerations to reflect power supply table, and updated Thermal Resistance Table. | | | | | 13 | Updated Thermal Table and Transistor Count. | | | | Т9 | 15 | Ordering Information Table - deleted "ICS" prefix in Part/Order column. Changed revision from "D" to "F". | | | | | | Converted datasheet format. | | | G | T5 | 4 | AC Characteristics Table - corrected typical part-to-part skew spec from 150 to 148ps. | 11/30/10 | | G | Т9 | 15 | Removed leaded orderable parts from Ordering Information table | 11/15/12 | # We've Got Your Timing Solution 6024 Silver Creek Valley Road San Jose, California 95138 Sales 800-345-7015 (inside USA) +408-284-8200 (outside USA) Fax: 408-284-2775 rax. 400-204-2773 www.IDT.com/go/contactIDT **Technical Support** $\begin{array}{l}netcom@idt.com\\+480\text{-}763\text{-}2056\end{array}$ DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT's sole discretion. All information in this document, including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties. IDT's products are not intended for use in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT. Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third party owners. Copyright 2012. All rights reserved.