ICS83940-02 NRND ### NOT RECOMMENDED FOR NEW DESIGNS #### GENERAL DESCRIPTION The ICS83940-02 is a low skew, 1-to-18 Fanout Buffer . The 83940-02 has two selectable clock inputs. The CLK0, nCLK0 pair can accept most standard differential input levels. The single ended clock input accepts LVCMOS or LVTTL input levels. The low impedance LVCMOS/LVTTL outputs are designed to drive 50Ω series or parallel terminated transmission lines. The effective fanout can be increased from 18 to 36 by utilizing the ability of the outputs to drive two series terminated lines. The ICS83940-02 is characterized at full 3.3V, full 2.5V and mixed 3.3V input and 2.5V output operating supply modes. Guaranteed output and part-to-part skew characteristics make the ICS83940 ideal for those clock distribution applications demanding well defined performance and repeatability. #### **F**EATURES - 18 LVCMOS/LVTTL outputs, 7Ω typical output impedance - Selectable LVCMOS_Clock or CLK0, nCLK0 input pair - LVCMOS_CLK supports the following input types: LVCMOS or LVTTL - CLK0, nCLK0 pair can accept the following differential input levels: LVPECL, LVDS, LVHSTL, SSTL, HCSL - Maximum output frequency: 200MHz - Output skew: 120ps (maximum) - Part-to-part skew: 850ps (maximum) - Output supply modes: Core/Output 3.3V/3.3V 3.3V/2.5V 2.5V/2.5V - 0°C to 70°C ambient operating temperature - · Industrial temperature information available upon request - NOT RECOMMENDED FOR NEW DESIGNS For New Designs Use: ICS83940D ## **BLOCK DIAGRAM** ## PIN ASSIGNMENT 32-Lead LQFP Y Pacakge 7mm x 7mm x 1.4mm package body Top View ## NOT RECOMMENDED FOR NEW DESIGNS TABLE 1. PIN DESCRIPTIONS | Number | Name | Туре | | Description | |--|---|--------|----------|---| | 1, 2, 12, 17, 25 | GND | Power | | Output supply ground. | | 3 | LVCMOS_CLK | Input | Pulldown | Clock input. LVCMOS/LVTTL interface levels. | | 4 | CLK_SEL | Input | Pulldown | Clock select input. Selects LVCMOS clock input when HIGH. Selects CLK0, nCLK0 inputs when LOW. LVCMOS/LVTTL itnerface levels. | | 5 | CLK0 | Input | Pulldown | Non-inverting differential clock input. | | 6 | nCLK0 | Input | Pullup | Inverting differential clock input | | 7 | $V_{_{\mathrm{DD}}}$ | Power | | Core supply pin. | | 8, 16, 21, 29 | $V_{_{\mathrm{DDO}}}$ | Power | | Output supply pins. | | 9, 10, 11, 13, 14,
15, 18, 19, 20, 22,
23, 24, 26, 27, 28,
30, 31, 32 | Q17, Q16, Q15, Q14, Q13,
Q12, Q11, Q10, Q9, Q8,
Q7, Q6, Q5, Q4, Q3,
Q2, Q1, Q0 | Output | | Clock outputs. 7Ω typical output impedance. LVCMOS/LVTTL interface levels. | NOTE: Pullup and Pulldown refers to internal input resistors. See Table 2, Pin Characteristics, for typical values. TABLE 2. PIN CHARACTERISTICS | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |-----------------------|--|-------------------------------------|---------|---------|---------|-------| | C _{IN} | Input Capacitance | | | 4 | | pF | | | | $V_{DD}, V_{DDO} = 3.465V$ | | 12 | | pF | | C _{PD} | Power Dissipation Capacitance (per output) | $V_{DD} = 3.465V, V_{DDO} = 2.625V$ | | 18 | | pF | | | (por dalpat) | $V_{DD}, V_{DDO} = 2.625V$ | | 18 | | pF | | R _{PULLUP} | Input Pullup Resistor | | | 51 | | ΚΩ | | R _{PULLDOWN} | Input Pulldown Resistor | | | 51 | | ΚΩ | | R _{out} | Output Impedance | | 5 | 7 | 12 | Ω | #### TABLE 3A. CLOCK SELECT FUNCTION TABLE | Control Input | Clock | | |---------------|-------------|-------------| | CLK_SEL | CLK0, nCLK0 | LVCMOS_CLK | | 0 | Selected | De-selected | | 1 | De-selected | Selected | #### TABLE 3B. CLOCK INPUT FUNCTION TABLE | | | Inputs | | Outputs | Innut to Output Made | Delevity | |---------|------------|----------------|----------------|---------|------------------------------|---------------| | CLK_SEL | LVCMOS_CLK | CLK0 | nCLK0 | Q0:Q17 | Input to Output Mode | Polarity | | 0 | _ | 0 | 1 | LOW | Differential to Single Ended | Non Inverting | | 0 | _ | 1 | 0 | HIGH | Differential to Single Ended | Non Inverting | | 0 | _ | 0 | Biased; NOTE 1 | LOW | Single Ended to Single Ended | Non Inverting | | 0 | _ | 1 | Biased; NOTE 1 | HIGH | Single Ended to Single Ended | Non Inverting | | 0 | _ | Biased; NOTE 1 | 0 | HIGH | Single Ended to Single Ended | Inverting | | 0 | _ | Biased; NOTE 1 | 1 | LOW | Single Ended to Single Ended | Inverting | | 1 | 0 | _ | _ | LOW | Single Ended to Single Ended | Non Inverting | | 1 | 1 | | | HIGH | Single Ended to Single Ended | Non Inverting | NOTE 1: Please refer to the Application Information section, "Wiring the Differential Input to Accept Single Ended Levels". www.idt.com REV. A MAY 21, 2013 83940AY-02 #### NOT RECOMMENDED FOR NEW DESIGNS #### ABSOLUTE MAXIMUM RATINGS Supply Voltage, V_{DD} 4.6V Inputs, V_1 -0.5V to V_{DD} + 0.5 V Outputs, V_{O} -0.5V to $V_{DDO} + 0.5V$ Package Thermal Impedance, θ_{1Δ} 47.9°C/W (0 Ifpm) Storage Temperature, T_{STG} -65°C to 150°C NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability. Table 4A. Power Supply DC Characteristics, $V_{DD} = 3.3V \pm 5\%$ or $2.5V \pm 5\%$, $V_{DDO} = 3V \pm 5\%$ or $2.5V \pm 5\%$, Ta = 0° to 70° | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |------------------|-----------------------|-----------------|---------|---------|---------|-------| | \/ | Cara Supply Voltage | | 3.135 | 3.3 | 3.465 | V | | V _{DD} | Core Supply Voltage | | 2.375 | 2.5 | 2.625 | V | | \/ | Output Supply Voltage | | 3.135 | 3.3 | 3.465 | V | | V _{DDO} | Output Supply Voltage | | 2.375 | 2.5 | 2.625 | V | | I _{DD} | Power Supply Current | | | | 25 | mA | | I _{DDO} | Output Supply Current | | | | 25 | mA | Table 4B. LVCMOS DC Characteristics, $V_{DD} = 3.3V \pm 5\%$ or $2.5V \pm 5\%$, $V_{DDO} = 3V \pm 5\%$ or $2.5V \pm 5\%$, Ta = 0° to 70° | Symbol | Parameter | | Test Conditions | Minimum | Typical | Maximum | Units | |---------------------------------------|-----------------------------|------------------------|--|---------|---------|----------------|-------| | V | Input High Voltage | LVCMOS_CLK | | 2 | | V .02 | V | | V _{IH} | Input High Voltage | CLK_SEL | | | | $V_{DD} + 0.3$ | V | | V _{IL} | Input Low Voltage | LVCMOS_CLK | | -0.3 | | 1.3 | V | | | | CLK_SEL | | -0.3 | | 0.8 | V | | I _{IH} | Input High Current | LVCMOS_CLK,
CLK_SEL | $V_{DD} = V_{IN} = 3.465V \text{ or}$
2.625V | | | 150 | μΑ | | I _{IL} | Input Low Current | LVCMOS_CLK,
CLK_SEL | $V_{DD} = 3.465V \text{ or } 2.625V,$
$V_{IN} = 0V$ | -5 | | | μΑ | | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | Output High Voltage; NOTE 1 | | $V_{DDO} = 3.465V$ | 2.4 | | | V | | V _{OH} | | | $V_{DDO} = 2.625V$ | 1.8 | | | V | | V_{OL} | Output Low Voltage; NO | TE 1 | $V_{DDO} = 3.465 \text{V} \text{ or } 2.625 \text{V}$ | | | 0.5 | V | NOTE 1: Outputs terminated with 50Ω to $V_{DDO}/2$. See 3.3V Output Load Test Circuit Diagram. #### NOT RECOMMENDED FOR NEW DESIGNS Table 4C. Differential DC Characteristics, $V_{DD} = 3.3V \pm 5\%$ or $2.5V \pm 5\%$, $V_{DDO} = 3V \pm 5\%$ or $2.5V \pm 5\%$, Ta = 0° to 70° | Symbol | Parameter | | Test Conditions Min | | Typical | Maximum | Units | |------------------|-------------------------|---------|--|-----------|---------|------------------------|-------| | | CLK0 | | $V_{DD} = V_{IN} = 3.465 \text{V or } 2.625 \text{V}$ | | | 150 | μΑ | | ¹ _{IH} | Input High Current | nCLK0 | $V_{DD} = V_{IN} = 3.465 \text{V or } 2.625 \text{V}$ | | | 5 | μA | | | Input Low Current | CLK0 | $V_{DD} = 3.465V \text{ or } 2.625V,$
$V_{IN} = 0V$ | -5 | | | μΑ | | ¹ _{IL} | Imput Low Current | nCLK0 | $V_{DD} = 3.465V \text{ or } 2.625V,$
$V_{IN} = 0V$ | -150 | | | μA | | V _{PP} | Peak-to-Peak Input Volt | age | | 0.15 | | 1.3 | ٧ | | V _{CMR} | Input Common Mode V | oltage; | | GND + 0.5 | | V _{DD} - 0.85 | V | NOTE 1: For single ended applications, the maximum input voltage for CLK0, nCLK0 is V_{DD} + 0.3V. NOTE 2: Common mode voltage is defined as $V_{\rm in}$. Table 5A. AC Characteristics, $V_{DD} = V_{DDO} = 3.3V \pm 5\%$, Ta = 0° to 70° | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |------------------|------------------------------|-----------------|---------|---------|---------|-------| | f _{MAX} | Output Frequency | | | | 200 | MHz | | tp _{LH} | Propagation Delay; NOTE 1 | | 2 | | 3.5 | ns | | tp _{HL} | Propagation Delay; NOTE 1 | | 2 | | 3.5 | ns | | tsk(o) | Output Skew; NOTE 2, 4 | | | | 120 | ps | | tsk(pp) | Part-to-Part Skew; NOTE 3, 4 | | | | 850 | ps | | t _R | Output Rise Time | 20% to 80% | 350 | | 1050 | ns | | t _F | Output Fall Time | 20% to 80% | 350 | | 1050 | ns | | odc | Output Duty Cycle | f ≤ 133MHz | 45 | | 55 | % | All parameters measured at $f_{\mbox{\tiny MAX}}$ unless noted otherwise. NOTE 1: Measured from the differential input crossing point to the output at $V_{DDO}/2$. NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at $V_{DDO}/2$. NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltages, with equal load conditions. Using the same type of inputs on each device, the outputs are measured at $V_{ppo}/2$. NOTE 4: This parameter is defined in accordance with JEDEC Standard 65. #### NOT RECOMMENDED FOR NEW DESIGNS **Table 5B. AC Characteristics,** $V_{DD} = 3.3V \pm 5\%$; $V_{DDO} = 2.5V \pm 5\%$, Ta = 0° to 70° | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |------------------|------------------------------|-----------------|---------|---------|---------|-------| | f _{MAX} | Output Frequency | | | | 200 | MHz | | tp _{LH} | Propagation Delay; NOTE 1 | | 2 | | 3.5 | ns | | tp _{HL} | Propagation Delay; NOTE 1 | | 2 | | 3.5 | ns | | tsk(o) | Output Skew; NOTE 2, 4 | | | | 120 | ps | | tsk(pp) | Part-to-Part Skew; NOTE 3, 4 | | | | 850 | ps | | t _R | Output Rise Time | 20% to 80% | 350 | | 1050 | ns | | t _F | Output Fall Time | 20% to 80% | 350 | | 1050 | ns | | odc | Output Duty Cycle | f ≤ 133MHz | 45 | | 55 | % | All parameters measured at f_{MAX} unless noted otherwise. NOTE 1: Measured from the differential input crossing point to the output at $V_{DDO}/2$. NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at $V_{DDO}/2$. NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltages, with equal load conditions. Using the same type of inputs on each device, the outputs are measured at V_{DDO}/2. NOTE 4: This parameter is defined in accordance with JEDEC Standard 65. Table 5C. AC Characteristics, $V_{DD} = V_{DDO} = 2.5 V \pm 5\%$, Ta = 0° to 70° | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |------------------|------------------------------|-----------------|---------|---------|---------|-------| | f _{MAX} | Output Frequency | | | | 200 | MHz | | tp _{LH} | Propagation Delay; NOTE 1 | | 2 | | 3.5 | ns | | tp _{HL} | Propagation Delay; NOTE 1 | | 2 | | 3.5 | ns | | tsk(o) | Output Skew; NOTE 2, 4 | | | | 120 | ps | | tsk(pp) | Part-to-Part Skew; NOTE 3, 4 | | | | 850 | ps | | t _R | Output Rise Time | 20% to 80% | 350 | | 1050 | ns | | t _F | Output Fall Time | 20% to 80% | 350 | | 1050 | ns | | odc | Output Duty Cycle | f ≤ 133MHz | 40 | | 60 | % | All parameters measured at $\boldsymbol{f}_{\text{\tiny MAX}}$ unless noted otherwise. NOTE 1: Measured from the differential input crossing point to the output at $V_{DDO}/2$. NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at $V_{\text{DDO}}/2$. NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltages, with equal load conditions. Using the same type of inputs on each device, the outputs are measured at V_{ppq}/2. NOTE 4: This parameter is defined in accordance with JEDEC Standard 65. #### NOT RECOMMENDED FOR NEW DESIGNS # PARAMETER MEASUREMENT INFORMATION #### 3.3V CORE/3.3V OUTPUT LOAD AC TEST CIRCUIT #### 2.5V CORE/2.5V OUTPUT LOAD AC TEST CIRCUIT #### 3.3V Core/2.5V OUTPUT LOAD AC TEST CIRCUIT #### DIFFERENTIAL INPUT LEVEL #### **OUTPUT SKEW** #### PART-TO-PART SKEW #### NOT RECOMMENDED FOR NEW DESIGNS #### OUTPUT RISE/FALL TIME #### PROPAGATION DELAY #### OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD ## **APPLICATION INFORMATION** #### WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS Figure 1 shows how the differential input can be wired to accept single ended levels. The reference voltage $V_REF = V_{cc}/2$ is generated by the bias resistors R1, R2 and C1. This bias circuit should be located as close as possible to the input pin. The ratio of R1 and R2 might need to be adjusted to position the V_REF in the center of the input voltage swing. For example, if the input clock swing is only 2.5V and $V_{CC} = 3.3V$, V_{REF} should be 1.25V and R2/R1 = 0.609. #### NOT RECOMMENDED FOR NEW DESIGNS #### DIFFERENTIAL CLOCK INPUT INTERFACE The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL and other differential signals. Both $\rm V_{SWING}$ and $\rm V_{OH}$ must meet the $\rm V_{PP}$ and $\rm V_{CMR}$ input requirements. Figures 2A to 2E show interface examples for the CLK/nCLK input driven by the most common driver types. The input interfaces suggested here are examples only. Please consult with the vendor of the driver component to confirm the driver termination requirements. For example in Figure 2A, the input termination applies for LVHSTL drivers. If you are using an LVHSTL driver from another vendor, use their termination recommendation. FIGURE 2A. **CLK/nCLK INPUT DRIVEN BY** LVHSTL DRIVER FIGURE 2B. **CLK/nCLK INPUT DRIVEN BY** 3.3V LVPECL DRIVER FIGURE 2C. **CLK/nCLK INPUT DRIVEN BY** 3.3V LVPECL DRIVER FIGURE 2D. CLK/nCLK INPUT DRIVEN BY 3.3V LVDS DRIVER FIGURE 2E. CLK/NCLK INPUT DRIVEN BY 3.3V LVPECL DRIVER WITH AC COUPLE #### NOT RECOMMENDED FOR NEW DESIGNS #### **APPLICATION SCHEMATIC EXAMPLE** Figure 3 shows an example of ICS83940-02 application schematic. In this example, the device is operated at V_{cc} =3.3V. The decoupling capacitor should be located as close as possible to the power pin. The differential input can accept different type of input signals. In this example, this input is driven by a 3.3V LVPECL driver. For the LVCMOS output, a termination example is shown in this schematic. For more termination approaches, please refer to the LVCMOS Termination Application Note. FIGURE 3. APPLICATION SCHEMATIC EXAMPLE ICS83940-02 NRND ## NOT RECOMMENDED FOR NEW DESIGNS # RELIABILITY INFORMATION Table 6. $\theta_{\text{JA}} \text{vs. Air Flow Table for 32 Lead LQFP}$ ## θ_{AA} by Velocity (Linear Feet per Minute) | | 0 | 200 | 500 | |--|----------|----------|----------| | Single-Layer PCB, JEDEC Standard Test Boards | 67.8°C/W | 55.9°C/W | 50.1°C/W | | Multi-Layer PCB, JEDEC Standard Test Boards | 47.9°C/W | 42.1°C/W | 39.4°C/W | NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs. #### TRANSISTOR COUNT The transistor count for ICS83940-02 is: 4270 ## NOT RECOMMENDED FOR NEW DESIGNS #### PACKAGE OUTLINE - Y SUFFIX FOR 32 LEAD LQFP TABLE 7. PACKAGE DIMENSIONS | | JEDEC VARIATION ALL DIMENSIONS IN MILLIMETERS | | | | | | | |---------|---|-----------------|------|--|--|--|--| | OVALDOL | | BBA | | | | | | | SYMBOL | МІМІМИМ | MINIMUM NOMINAL | | | | | | | N | | 32 | | | | | | | Α | | | 1.60 | | | | | | A1 | 0.05 | | 0.15 | | | | | | A2 | 1.35 | 1.40 | 1.45 | | | | | | b | 0.30 | 0.37 | 0.45 | | | | | | С | 0.09 | | 0.20 | | | | | | D | | 9.00 BASIC | | | | | | | D1 | | 7.00 BASIC | | | | | | | D2 | | 5.60 Ref. | | | | | | | E | | 9.00 BASIC | | | | | | | E1 | | 7.00 BASIC | | | | | | | E2 | | 5.60 Ref. | | | | | | | е | | 0.80 BASIC | | | | | | | L | 0.45 | 0.60 | 0.75 | | | | | | θ | 0° | | 7° | | | | | | ccc | | | 0.10 | | | | | REFERENCE DOCUMENT: JEDEC Publication 95, MS-026 ICS83940-02 NRND ## NOT RECOMMENDED FOR NEW DESIGNS TABLE 8. ORDERING INFORMATION | Part/Order Number | Marking | Package | Shipping Packaging | Temperature | |-------------------|---------------|------------------------|--------------------|-------------| | 83940AY-02 | ICS83940AY-02 | 32 Lead LQFP | tray | 0°C to 70°C | | 83940AY-02T | ICS83940AY-02 | 32 Lead LQFP | 1000 Tape and Reel | 0°C to 70°C | | 83940AY-02LF | ICS3940AY02L | 32 Lead LQFP Lead Free | tray | 0°C to 70°C | | 83940AY-02LFT | ICS3940AY02L | 32 Lead LQFP Lead Free | 1000 Tape and Reel | 0°C to 70°C | NOTE: Parts that are ordered with an ""LF"" suffix to the part number are the Pb-Free configuration and are RoHS compliant. While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology, Inc. (IDT) assumes no responsibility for either its use or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial and industrial applications. Any other applications such as those requiring high reliability, or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments. ## ICS83940-02 **NRND** ## NOT RECOMMENDED FOR NEW DESIGNS | REVISION HISTORY SHEET | | | | | | |------------------------|-------|----------|--|--|--| | Rev | Table | Page | Description of Change | | | | Α | T8 | 13 | Ordering Information Table - Added Lead Free Marking and Note | | | | А | Т8 | 13
15 | Updated datasheet's header/footer with IDT from ICS. Removed ICS prefix from Part/Order Number column. Added Contact Page. | | | | А | | 1 | NRND - Not Recommended For New Designs Use Replacement Part 83940D 5/2 | | | ICS83940-02 NRND NOT RECOMMENDED FOR NEW DESIGNS # We've Got Your Timing Solution. 6024 Silver Creek Valley Road San Jose, CA 95138 Sales 800-345-7015 (inside USA) +408-284-8200 (outside USA) Fax: 408-284-2775 www.IDT.com/go/contactIDT Tech Support netcom@idt.com +480-763-2056 DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT's sole discretion. All information in this document, including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties. IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT. Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third party owners. Copyright 2013. All rights reserved.