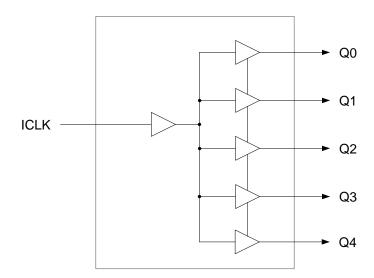


DATASHEET

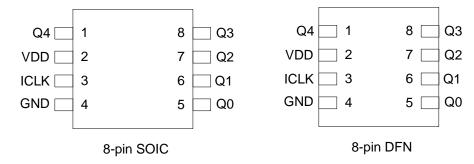
Description


The 74FCT38075S is a low skew, single input to five output, clock buffer. The 74FCT38075S has best in class additive phase Jitter of sub 50 fsec.

IDT makes many non-PLL and PLL based low output skew devices as well as Zero Delay Buffers to synchronize clocks. Contact us for all of your clocking needs.

Features

- Extremely low RMS Additive Phase Jitter: 50fs
- Low output skew: 50ps
- Packaged in 8-pin SOIC and 8-pin DFN
- Pb (lead) free package
- Low power CMOS technology
- Operating voltages of 1.8V to 3.3V
- Extended temperature range (-40°C to +105°C)


Block Diagram

1

Pin Assignments

Pin Descriptions

Pin Number	Pin Name	Pin	Pin Description
Number	Name	Type	
1	Q4	Output	Clock Output 4.
2	VDD	Power	Connect to +1.8V, +2.5 V, or +3.3 V.
3	ICLK	Input	Clock input.
4	GND	Power	Connect to ground.
5	Q0	Output	Clock output 0.
6	Q1	Output	Clock output 1.
7	Q2	Output	Clock Output 2.
8	Q3	Output	Clock Output 3.

External Components

A minimum number of external components are required for proper operation. A decoupling capacitor of $0.01\mu F$ should be connected between VDD on pin 2 and GND on pin 4, as close to the device as possible. A 33Ω series terminating resistor may be used on each clock output if the trace is longer than 1 inch.

To achieve the low output skew that the 74FCT38075S is capable of, careful attention must be paid to board layout. Essentially, all five outputs must have identical terminations, identical loads and identical trace geometries. If they do not, the output skew will be degraded. For example, using a 30Ω series termination on one output (with 33Ω on the others) will cause at least 15 ps of skew.

Absolute Maximum Ratings

Stresses above the ratings listed below can cause permanent damage to the 74FCT38075S. These ratings, which are standard values for IDT commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

Item	Rating
Supply Voltage, VDD	3.465V
Outputs	-0.5 V to VDD+0.5 V
ICLK	3.465V
Ambient Operating Temperature (extended)	-40° to +105°C
Storage Temperature	-65° to +150°C
Junction Temperature	125°C
Soldering Temperature	260°C

Recommended Operation Conditions

Parameter	Min.	Тур.	Max.	Units
Ambient Operating Temperature (extended)	-40		+105	°C
Power Supply Voltage (measured in respect to GND)	+1.71		+3.465	V

DC Electrical Characteristics

(VDD = 1.8V, 2.5V, 3.3V)

VDD=1.8V ±5%, Ambient temperature -40° to +105°C, unless stated otherwise

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Operating Voltage	VDD		1.71		1.89	V
Input High Voltage, ICLK	V _{IH}	Note 1	0.7 x VDD		1.89	V
Input Low Voltage, ICLK	V _{IL}	Note 1			0.3 x VDD	V
Output High Voltage	V _{OH}	I _{OH} = -10 mA	1.3			V
Output Low Voltage	V _{OL}	I _{OL} = 10mA			0.35	V
Operating Supply Current	IDD	No load, 135 MHz		13		mA
Nominal Output Impedance	Z _O			17		Ω
Input Capacitance	C _{IN}	ICLK		5		pF

Notes: 1. Nominal switching threshold is VDD/2

VDD=2.5 V ±5%, Ambient temperature -40° to +105°C, unless stated otherwise

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Operating Voltage	VDD		2.375		2.625	V
Input High Voltage, ICLK	V _{IH}	Note 1	0.7 x VDD		2.625	V
Input Low Voltage, ICLK	V _{IL}	Note 1			0.3 x VDD	V
Output High Voltage	V _{OH}	I _{OH} = -16 mA	1.8			V
Output Low Voltage	V _{OL}	I _{OL} = 16 mA			0.5	V
Operating Supply Current	IDD	No load, 135 MHz		18		mA
Nominal Output Impedance	Z _O			17		Ω
Input Capacitance	C _{IN}	ICLK		5		pF

VDD=3.3 V \pm 5\%, Ambient temperature -40° to +105°C, unless stated otherwise

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Operating Voltage	VDD		3.135		3.465	V
Input High Voltage, ICLK	V _{IH}	Note 1	0.7 x VDD		3.465	V
Input Low Voltage, ICLK	V _{IL}	Note 1			0.3 x VDD	V
Output High Voltage	V _{OH}	I _{OH} = -25 mA	2.2			V
Output Low Voltage	V _{OL}	I _{OL} = 25 mA			0.7	V
Operating Supply Current	IDD	No load, 135 MHz		22		mA
Nominal Output Impedance	Z _O			17		Ω
Input Capacitance	C _{IN}	ICLK		5		pF

AC Electrical Characteristics

(VDD = 1.8V, 2.5V, 3.3V)

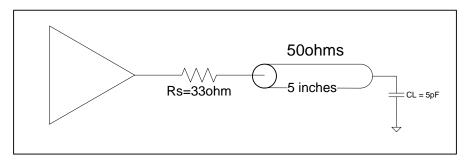
VDD = 1.8V ±5%, Ambient Temperature -40° to +105°C, unless stated otherwise

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Input Frequency			0		200	MHz
Output Rise Time	t _{OR}	0.36 to 1.44 V, C _L =5 pF		0.6	1.0	ns
Output Fall Time	t _{OF}	1.44 to 0.36 V, C _L =5 pF		0.6	1.0	ns
Start-up Time	t _{START-UP}	Part start-up time for valid outputs after VDD ramp-up			2	ms
Propagation Delay		135MHz, Note 1	1.5	3	4	ns
Buffer Additive Phase Jitter, RMS		125MHz, Integration Range: 12kHz-20MHz			0.05	ps
Output to Output Skew		Rising edges at VDD/2, Note 2		50	65	ps
Device to Device Skew		Rising edges at VDD/2			500	ps

VDD = 2.5 V ±5%, Ambient Temperature -40° to +105°C, unless stated otherwise

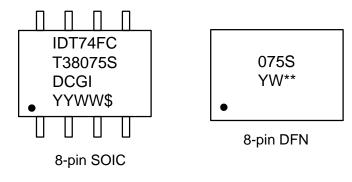
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Input Frequency			0		200	MHz
Output Rise Time	t _{OR}	0.5 to 2.0 V, C _L =5 pF		0.6	1.0	ns
Output Fall Time	t _{OF}	2.0 to 0.5 V, C _L =5 pF		0.6	1.0	ns
Start-up Time	t _{START-UP}	Part start-up time for valid outputs after VDD ramp-up			2	ms
Propagation Delay		135MHz, Note 1	1.8	2.5	4.5	ns
Buffer Additive Phase Jitter, RMS		125MHz, Integration Range: 12kHz-20MHz			0.05	ps
Output to Output Skew		Rising edges at VDD/2, Note 2		50	65	ps
Device to Device Skew		Rising edges at VDD/2			500	ps

VDD = 3.3 V ±5%, Ambient Temperature -40° to +105°C, unless stated otherwise


Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Input Frequency			0		200	MHz
Output Rise Time	t _{OR}	0.66 to 2.64 V, C _L =5 pF		0.6	1.0	ns
Output Fall Time	t _{OF}	2.64 to 0.66 V, C _L =5 pF		0.6	1.0	ns
Start-up Time	t _{START-UP}	Part start-up time for valid outputs after VDD ramp-up			2	ms
Propagation Delay		135MHz, Note 1	1.5	2.5	4	ns
Buffer Additive Phase Jitter, RMS		125MHz, Integration Range: 12kHz-20MHz			0.05	ps
Output to Output Skew		Rising edges at VDD/2, Note 2		50	65	ps
Device to Device Skew		Rising edges at VDD/2			500	ps

Notes:
1. With rail to rail input clock
2. Between any 2 outputs with equal loading.

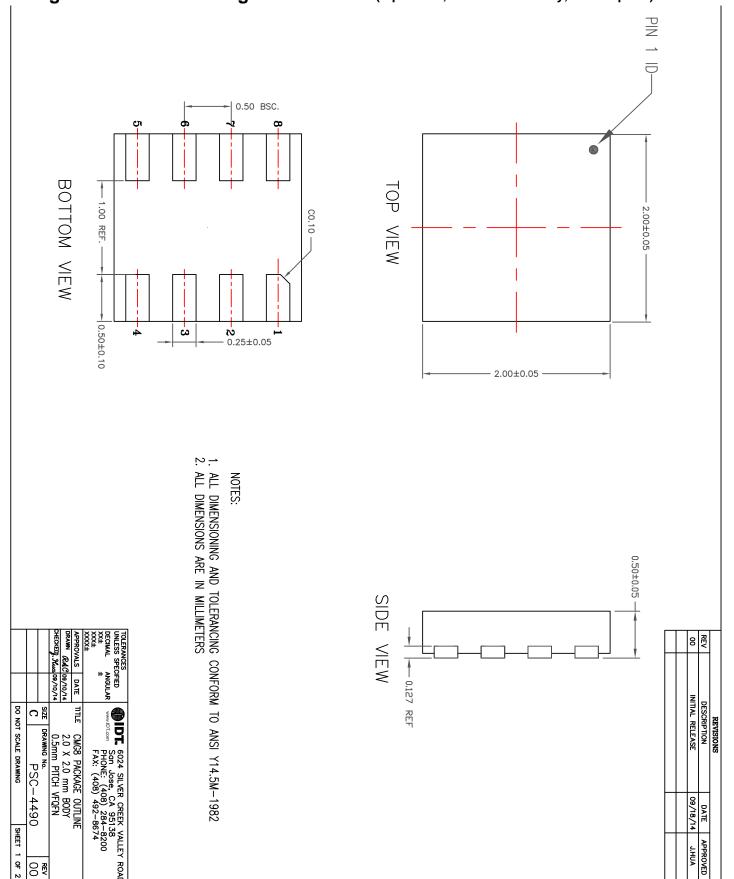
^{3.} Duty cycle on outputs will match incoming clock duty cycle. Consult IDT for tight duty cycle clock generators.


Test Load and Circuit

Thermal Characteristics (8SOIC)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Thermal Resistance Junction to Ambient	θ_{JA}	Still air		150		°C/W
	θ_{JA}	1 m/s air flow		140		°C/W
	θ_{JA}	3 m/s air flow		120		°C/W
Thermal Resistance Junction to Case	$\theta_{\sf JC}$			40		°C/W

Marking Diagrams



Notes:

- 1. "**" is the lot number.
- 2. "YYWW" or "YW" are the last digits of the year and week that the part was assembled.
- 3 "G" denotes RoHS compliant package.
- 4. "\$" denotes mark code.
- 5. "I" denotes extended temperature range device.

Package Outline and Package Dimensions (8-pin DFN, 2mm x 2mm Body, 0.5mm pitch)

MOUNT DESIGN AND LAND PATTERN

RECOMMENDATION PER IPC-7351B GENERIC REQUIREMENT FOR

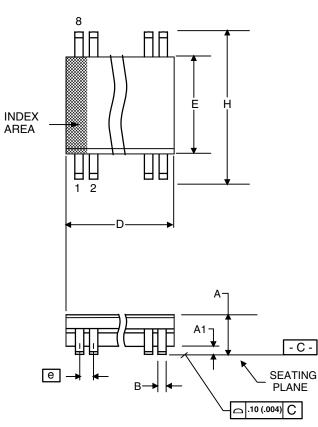
FOR REFERENCE IN GREEN.

Package Outline and Package Dimensions, cont. (8-pin DFN, 2mm x 2mm Body, 0.5mm pitch)

RECOMMENDED LAND PATTERN DIMENSION

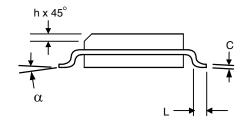
8

DO NOT SCALE DRAWING


09/18/14 DATE

8 8

DESCRIPTION
INITIAL RELEASE



Package Outline and Package Dimensions (8-pin SOIC, 150 Mil. Narrow Body)

	Millim	neters	Inch	nes*
Symbol	Min	Max	Min	Max
Α	1.35	1.75	.0532	.0688
A1	0.10	0.25	.0040	.0098
В	0.33	0.51	.013	.020
С	0.19	0.25	.0075	.0098
D	4.80	5.00	.1890	.1968
E	3.80	4.00	.1497	.1574
е	1.27 E	BASIC	0.050	BASIC
Н	5.80	6.20	.2284	.2440
h	0.25	0.50	.010	.020
L	0.40	1.27	.016	.050
а	0°	8°	0°	8°

^{*}For reference only. Controlling dimensions in mm.

Ordering Information

Part / Order Number	Marking	Shipping Packaging	Package	Temperature
74FCT38075SDCGI	see page 6	Tubes	8-pin SOIC	-40° to +105°C
74FCT38075SDCGI8		Tape and Reel	8-pin SOIC	-40° to +105°C
74FCT38075SCMGI		Cut Tape	8-pin DFN	-40° to +105°C
74FCT38075SCMGI8		Tape and Reel	8-pin DFN	-40° to +105°C

9

[&]quot;G" after the two-letter package code denotes Pb-Free configuration, RoHS compliant.

Revision History

Rev.	Date	Originator	Description of Change
Α	03/18/15	B. Chandhoke	Initial release.

Corporate Headquarters 6024 Silver Creek Valley Road San Jose, CA 95138 USA

Sales

1-800-345-7015 or 408-284-8200 Fax: 408-284-2775

www.IDT.com

Tech Support

email: clocks@idt.com

DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT's sole discretion. All information in this document, including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.

IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.

Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Product specification subject to change without notice. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third party owners.

Copyright ©2015 Integrated Device Technology, Inc.. All rights reserved.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

IDT (Integrated Device Technology):

74FCT38075SDCGI8 74FCT38075SDCGI 74FCT38075SCMGI8 74FCT38075SCMGI