

2 OUTPUT PCIE GEN1/2/3 SYNTHESIZER

IDT5V41235

Recommended Applications

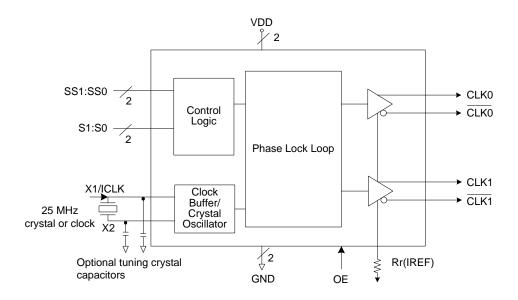
2 Output synthesizer for PCIe Gen1/2/3 and Ethernet

General Description

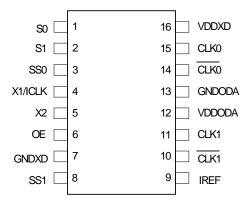
The IDT5V41235 is a PCIe Gen2/3 compliant spread spectrum capable clock generator. The device has 2 differential HCSL outputs and can be used in communication or embedded systems to substantially reduce electro-magnetic interference (EMI). The spread amount and output frequency are selectable via select pins. The IDT5V41235 can also supply 25 MHz, 125 MHz and 200 MHz outputs for applications such as Ethernet.

Output Features

• 2 - 0.7V current mode differential HCSL output pairs


Features/Benefits

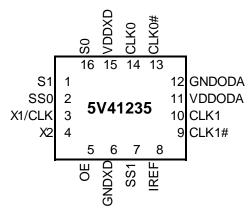
- 16-pin TSSOP and MLF packages; small board footprint
- Spread-spectrum capable; reduces EMI
- Outputs can be terminated to LVDS; can drive a wider variety of devices
- 25 MHz, 125 MHz and 200 MHz output frequencies; TSSOP only
- 100MHz and 200MHz output frequencies; MLF package
- OE control pin; greater system power management
- Spread% and frequency pin selection; no software required to configure device
- Industrial temperature range available; supports demanding embedded applications


Key Specifications

- Cycle-to-cycle jitter < 100 ps
- Output-to-output skew < 50 ps
- PCIe Gen2 phase jitter < 3.0ps RMS
- PCIe Gen3 phase jitter <1.0ps RMS

Block Diagram

Pin Assignments


16-pin (173 mil) TSSOP

Output Select Table 1 (MHz) - TSSOP Only

S1	S0	CLK(1:0), CLK(1:0)
0	0	25M
0	1	100M
1	0	125M
1	1	200M

Spread Selection Table 2 - TSSOP Only

SS1	SS0	Spread%
0	0	No Spread
0	1	Down -0.5
1	0	Down -0.75
1	1	No Spread

16-pin MLF

Output/Spread Select Table 3 - MLF Only

S1	S0	SS1	SS0	Output	Spread%	
0	0	0	0	100MHz	-0.5	
0	0	0	1	200MHz	-0.5	
0	0	1	0	100MHz	No spread	
0	0	1	1	Res	served	
0	1	0	0	100MHz	-1	
0	1	0	1	200MHz	-1	
0	1	1	0	Reserved		
0	1	1	1	Reserved		
1	0	0	0	100MHz	-1.5	
1	0	0	1	200MHz	-1.5	
1	0	1	0	Res	served	
1	0	1	1	Res	served	
1	1	0	0	Reserved		
1	1	0	1	200MHz No spread		
1	1	1	0	Reserved		
1	1	1	1	Res	served	

Pin Descriptions

MLF Pin	TSSOP	Pin	Pin	Pin Description
Number	Pin	Name	Type	
	Number			
16	1	S0	Input	Select pin 0. See Table1. Internal pull-up resistor.
1	2	S1	Input	Select pin 1. See Table 1. Internal pull-up resistor.
2	3	SS0	Input	Spread Select pin 0. See Table 2. Internal pull-up resistor.
3	4	X1/ICLK	Input	Crystal or clock input. Connect to a 25 MHz crystal or single ended clock.
4	5	X2	Output	Crystal connection. Leave unconnected for clock input.
5	6	OE	Input	Output enable. Tri-states outputs and device is not shut down. Internal pull-up resistor.
6	7	GNDXD	Power	Connect to ground.
7	8	SS1	Input	Spread Select pin 1. See Table 2. Internal pull-up resistor.
8	9	IREF	Output	Precision resistor attached to this pin is connected to the internal current reference.
9	10	CLK1	Output	HCSL complementary clock output 1.
10	11	CLK1	Output	HCSL true clock output 1.
11	12	VDDODA	Power	Connect to voltage supply +3.3 V for output driver and analog circuits
12	13	GNDODA	Power	Connect to ground.
13	14	CLK0	Output	HCSL complementary clock output 0.
14	15	CLK0	Output	HCSL true clock output 0.
15	16	VDDXD	Power	Connect to voltage supply +3.3 V for crystal oscillator and digital circuit.

Applications Information

External Components

A minimum number of external components are required for proper operation.

Decoupling Capacitors

Decoupling capacitors of 0.01 μF should be connected between each VDD pin and the ground plane, as close to the VDD pin as possible. Do not share ground vias between components. Route power from power source through the capacitor pad and then into ICS pin.

Crystal

A 25 MHz fundamental mode parallel resonant crystal should be used. This crystal must have less than 300 ppm of error across temperature in order for the IDT5V41235 to meet PCI Express specifications.

Crystal Capacitors

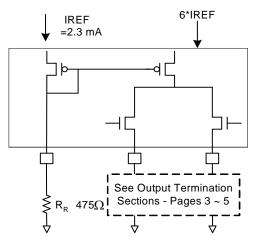
Crystal capacitors are connected from pins X1 to ground and X2 to ground to optimize the accuracy of the output frequency.

C_I = Crystal's load capacitance in pF

Crystal Capacitors (pF) = $(C_1 - 7) * 2$

For example, for a crystal with a 8pF load cap, each external crystal cap would be 2pF [(8-7)*2=2].

Current Source (Iref) Reference Resistor - RR


If board target trace impedance (Z) is 50Ω , then R_R = 475Ω (1%), providing IREF of 2.32 mA. The output current (I_{OH}) is equal to 6*IREF.

Output Termination

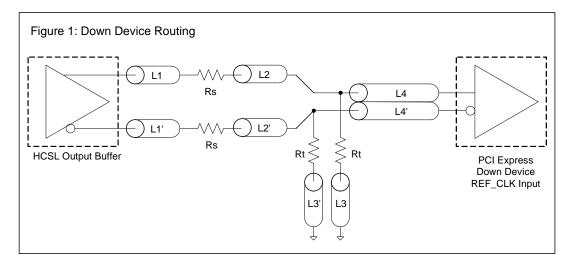
The PCI-Express differential clock outputs of the IDT5V41235 are open source drivers and require an external series resistor and a resistor to ground. These resistor values and their allowable locations are shown in detail in the **PCI-Express Layout Guidelines** section.

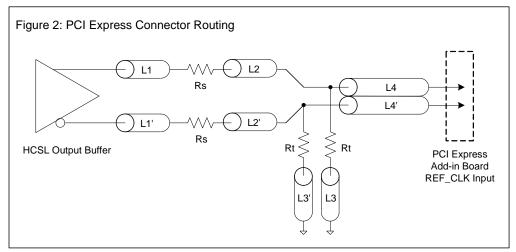
The IDT5V41235 can also be configured for LVDS compatible voltage levels. See the LVDS Compatible Layout Guidelines section.

Output Structures

General PCB Layout Recommendations

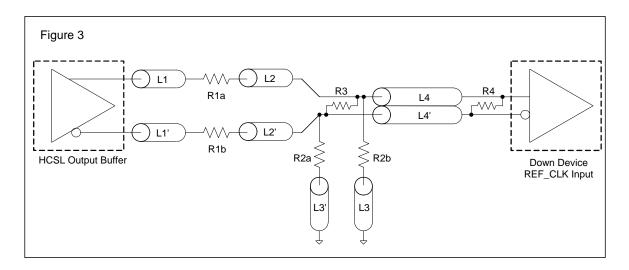
For optimum device performance and lowest output phase noise, the following guidelines should be observed.

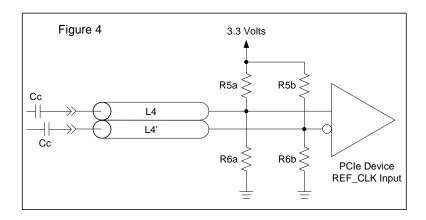

- 1. Each $0.01\mu F$ decoupling capacitor should be mounted on the component side of the board as close to the VDD pin as possible.
- 2. No vias should be used between decoupling capacitor and VDD pin.
- 3. The PCB trace to VDD pin should be kept as short as possible, as should the PCB trace to the ground via. Distance of the ferrite bead and bulk decoupling from the device is less critical.
- 4. An optimum layout is one with all components on the same side of the board, minimizing vias through other signal layers (any ferrite beads and bulk decoupling capacitors can be mounted on the back). Other signal traces should be routed away from the IDT5V41235. This includes signal traces just underneath the device, or on layers adjacent to the ground plane layer used by the device.


Layout Guidelines

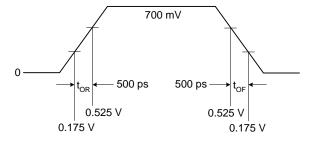
SRC Reference Clock							
Common Recommendations for Differential Routing	Dimension or Value	Unit	Figure				
L1 length, route as non-coupled 50ohm trace	0.5 max	inch	1				
L2 length, route as non-coupled 50ohm trace	0.2 max	inch	1				
L3 length, route as non-coupled 50ohm trace	0.2 max	inch	1				
Rs	33	ohm	1				
Rt	49.9	ohm	1				

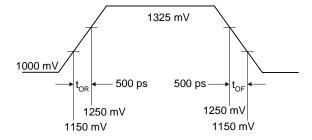
Down Device Differential Routing			
L4 length, route as coupled microstrip 100ohm differential trace	2 min to 16 max	inch	1
L4 length, route as coupled stripline 100ohm differential trace	1.8 min to 14.4 max	inch	1


Differential Routing to PCI Express Connector			
L4 length, route as coupled microstrip 100ohm differential trace	0.25 to 14 max	inch	2
L4 length, route as coupled stripline 100ohm differential trace	0.225 min to 12.6 max	inch	2



	Alternative Termination for LVDS and other Common Differential Signals (figure 3)							
Vdiff Vp-p Vcm R1 R2 R3 R4 Note							Note	
0.45v 0.22v 1.08 33 150 100 100								
0.58	0.28	0.6	33	78.7	137	100		
0.80	0.40	0.6	33	78.7	none	100	ICS874003i-02 input compatible	
0.60	0.3	1.2	33	174	140	100	Standard LVDS	


R1a = R1b = R1R2a = R2b = R2


Cable Conne	Cable Connected AC Coupled Application (figure 4)					
Component	Value	Note				
R5a, R5b	8.2K 5%					
R6a, R6b	1K 5%					
Сс	0.1 μF					
Vcm	0.350 volts					

Typical PCI-Express (HCSL) Waveform

Typical LVDS Waveform

Absolute Maximum Ratings

Stresses above the ratings listed below can cause permanent damage to the IDT5V41235. These ratings are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

Item	Rating
Supply Voltage, VDDXD, VDDODA	4.6 V
All Inputs and Outputs	-0.5 V to VDD+0.5 V
Ambient Operating Temperature (commercial)	0 to +70°C
Ambient Operating Temperature (industrial)	-40 to +85°C
Storage Temperature	-65 to +150°C
Junction Temperature	125°C
Soldering Temperature	260°C
ESD Protection (Input)	2000 V min. (HBM)

DC Electrical Characteristics

Unless stated otherwise, VDD = 3.3 V ±5%, Ambient Temperature -40 to +85°C

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Supply Voltage	V		3.135	3.3	3.465	V
Input High Voltage ¹	V _{IH}	S0, S1, OE, ICLK, SS0, SS1	2.2		VDD +0.3	V
Input Low Voltage ¹	V _{IL}	S0, S1, OE, ICLK, SS0, SS1	VSS-0.3		0.8	V
Input Leakage Current ²	I _{IL}	0 < Vin < VDD	-5		5	μΑ
Operating Supply Current	I _{DD}	R_S =33 Ω , R_P =50 Ω , C_L =2 pF		63	85	mA
@100 MHz	I _{DDOE}	OE =Low		42	50	mA
Input Capacitance	C _{IN}	Input pin capacitance			7	pF
Output Capacitance	C _{OUT}	Output pin capacitance			6	pF
X1, X2 Capacitance	C _{INX}				5	pF
Pin Inductance	L _{PIN}				5	nΗ
Output Impedance	Z _O	CLK outputs	3.0			kΩ
Pull-up Resistor	R _{PU}	S0, S1, OE, SS0, SS1		100		kΩ

- 1. Single edge is monotonic when transitioning through region.
- 2. Inputs with pull-ups/-downs are not included.

AC Electrical Characteristics - CLK0/CLK1, CLK0/CLK1

Unless stated otherwise, VDD=3.3 V ±5%, Ambient Temperature -40 to +85°C

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Input Frequency				25		MHz
Output Frequency		HCSL termination	25		200	MHz
		LVDS termination	25		100	MHz
Output High Voltage ^{1,2}	V _{OH}	HCSL			850	mV
Output Low Voltage ^{1,2}	V _{OL}	HCSL	-150			mV
Crossing Point Voltage ^{1,2}		Absolute	250		550	mV
Crossing Point Voltage ^{1,2,4}		Variation over all edges			140	mV
Jitter, Cycle-to-Cycle ^{1,3}					100	ps
Frequency Synthesis Error		All outputs		0		ppm
Modulation Frequency		Spread spectrum	30	32.9	33	kHz
Rise Time ^{1,2}	t _{OR}	From 0.175 V to 0.525 V	175		700	ps
Fall Time ^{1,2}	t _{OF}	From 0.525 V to 0.175 V	175		700	ps
Rise/Fall Time Variation ^{1,2}					125	ps
Output to Output Skew					50	ps
Duty Cycle ^{1,3}			45		55	%
Output Enable Time ⁵		All outputs		50	100	ns
Output Disable Time ⁵		All outputs		50	100	ns
Stabilization Time	t _{STABLE}	From power-up VDD=3.3 V			1.8	ms
Spread Spectrum Transition Time	t _{SPREAD}	Stabilization time after spread spectrum changes	7		30	ms

- Note 1: Test setup is $R_S=33\Omega$, $R_P=50\Omega$ with $C_I=2$ pF, $R_I=475\Omega$ (1%).
- Note 2: Measurement taken from a single-ended waveform.
- Note 3: Measurement taken from a differential waveform.
- Note 4: Measured at the crossing point where instantaneous voltages of both CLK and $\overline{\text{CLK}}$ are equal.
- Note 5: CLK pins are tri-stated when OE is low asserted. CLK is driven differential when OE is high.

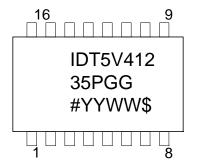
Electrical Characteristics - Differential Phase Jitter Parameters

T_A = Commercial and Industrial, Supply Voltage VDD = 3.3 V +/-5%				SPEC				
PARAMETER	Symbol	Conditions M		Тур	Max	Units	Notes	
Jitter, Phase	t _{jphaseG1}	PCIe Gen 1		28	86	ps (p-p)	1,2,3	
	t _{jphaseG2Lo}	PCIe Gen 2 10kHz < f < 1.5MHz		0.7	3	ps (RMS)	1,2,3	
	t _{jphaseG2High}	PCIe Gen 2 1.5MHz < f < Nyquist (50MHz)		1.8	3.1	ps (RMS)	1,2,3	
	t _{jphaseG3}	PCIe Gen 3		0.48	1	ps (RMS)	1,2,3	

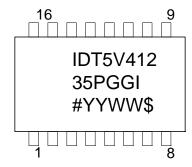
¹Guaranteed by design and characterization, not 100% tested in production.

²See http://www.pcisig.com for complete specs

³Applies to 100MHz, spread off and 0.5% down spread only.


Thermal Characteristics (16TSSOP)

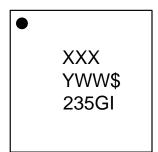
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Thermal Resistance Junction to	$\theta_{\sf JA}$	Still air		78		°C/W
Ambient	$\theta_{\sf JA}$	1 m/s air flow		70		°C/W
	$\theta_{\sf JA}$	3 m/s air flow		68		°C/W
Thermal Resistance Junction to Case	$\theta_{\sf JC}$			37		°C/W


Thermal Characteristics (16MLF)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Thermal Resistance Junction to	$\theta_{\sf JA}$	Still air		63.2		°C/W
Ambient	$\theta_{\sf JA}$	1 m/s air flow		55.9		°C/W
	$\theta_{\sf JA}$	3 m/s air flow		51.4		°C/W
Thermal Resistance Junction to Case	$\theta_{\sf JC}$			65.8		°C/W

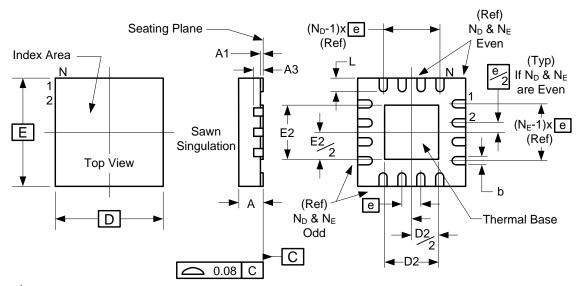
Marking Diagram (5V41235PGG)

Marking Diagram (5V41235PGGI)


Notes:

- 1. Line 1 and 2: IDT part number.
- 2. Line 3: # Die revision; YYWW Date code; \$ Assembly location.
- 3. "G" after the two-letter package code designates RoHS compliant package.
- 4. "I" at the end of part number indicates industrial temperature range.
- 5. Bottom marking: country of origin if not USA.

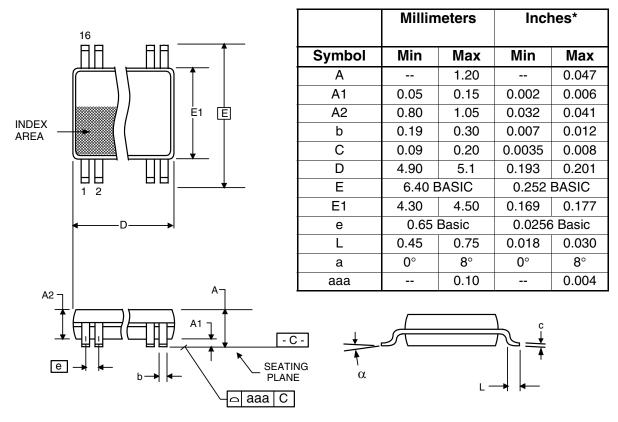
Marking Diagram (5V41235NLGI)


Marking Diagram (5V41235NLGI)

Notes:

- 1. Line 1: Lot number.
- 2. Line 2: YWW Date code; \$ Assembly location.
- 3. "G" designates RoHS compliant package.
- 4. "I" at the end of part number indicates industrial temperature range.
- 5. Bottom marking: country of origin if not USA.

Package Outline and Package Dimensions (16-pin 3x3mm MLF)



	Millimeters		
Symbol	Min	Max	
Α	0.80	1.00	
A1	0	0.05	
A3	0.20 Re	eference	
b	0.18	0.30	
е	0.50 BASIC		
N	16		
N _D	4		
N _E	4		
D x E BASIC	3.00 x 3.00		
D2	1.55	1.80	
E2	1.55	1.80	
L	0.30	0.50	

12

Package Outline and Package Dimensions (16-pin TSSOP, 173 Mil. Narrow Body)

Package dimensions are kept current with JEDEC Publication No. 95

Ordering Information

Part / Order Number	Marking	Shipping Packaging	Package	Temperature	
5V41235PGG	See Page 10	Tubes	16-pin TSSOP	0 to +70° C	
5V41235PGG8		Tape and Reel	16-pin TSSOP	0 to +70° C	
5V41235PGGI		Tubes	16-pin TSSOP	-40 to +85° C	
5V41235PGGI8		Tape and Reel	16-pin TSSOP	-40 to +85° C	
5V41235NLG	See Page 10	Tubes	16-pin MLF	0 to +70° C	
5V41235NLG8		Tape and Reel	16-pin MLF	0 to +70° C	
5V41235NLGI		Tubes	16-pin MLF	-40 to +85° C	
5V41235NLGI8		Tape and Reel	16-pin MLF	-40 to +85° C	

[&]quot;G" after the two-letter package code are the Pb-Free configuration and are RoHS compliant.

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

Revision History

Rev.	Originator	Date	Description of Change
Α	RDW	11/02/11	Initial release.
В	RDW	11/22/11	Changed title to "2 Output PCle GEN1/2/3 Synthesizer" Updated Differential Phase Jitter table.
С	RDW	06/06/12	1. Updated Features bullet(s) from: "• 25 MHz, 125 MHz and 200 MHz output frequencies; supports Ethernet applications", to: "• 25 MHz, 100MHz, 125 MHz and 200 MHz output frequencies; TSSOP-only • 100MHz output frequency; MLF package". 2. Added table 3, Output/Spread Select table for MLF only
D	S. Sharma	10/16/12	Updated and expanded Output Select table per char review. Changed crystal capacitance load spec from 16pF to 8pF.
Е	IH	09/09/15	Corrected typo in Ordering information; NLG and NLGI shipping packaging changed from "Tray" to "Tubes".

IDT5V41235 2 OUTPUT PCIE GEN1/2/3 SYNTHESIZER

Innovate with IDT and accelerate your future networks. Contact:

www.IDT.com

For Sales

800-345-7015 408-284-8200 Fax: 408-284-2775 For Tech Support

Technical Support request form

Corporate Headquarters

Integrated Device Technology, Inc. www.idt.com

