
# Thermally-Enhanced High Power RF LDMOS FET 180 W, 28 V, 920 – 960 MHz

## **Description**

The PTFB091802FC LDMOS FET is designed for use in power amplifier applications in the 920 MHz to 960 MHz frequency band. Features include high gain and a thermally-enhanced package with earless flange. Manufactured with Infineon's advanced LDMOS process, this device provides excellent thermal performance and superior reliability.

PTFB091802FC Package H-37248-4





#### **Features**

- Broadband internal input and output matching
- Dual path design (2 X 90 W)
- Typical CW performance at 960 MHz, 28 V
  - Ouput power @ P<sub>1dB</sub> = 206 W
  - Efficiency = 56%
  - Gain = 18 dB
- Capable of handling 10:1 VSWR @ 28 V, 180 W (CW) output power
- Integrated ESD protection
- · Low thermal resistance
- · Pb-free and RoHS-compliant

#### **RF Characteristics**

Single-carrier WCDMA Specifications (tested in Infineon production test fixture)

 $V_{DD}$  = 28 V,  $I_{DQ}$  = 1400 mA,  $P_{OUT}$  = 55 W avg,  $f_1$  =920 MHz,  $f_2$  = 960 MHz, 3GPP signal, channel bandwidth = 3.84 MHz, peak/average = 10 dB @ 0.01% CCDF

| Characteristic                | Symbol     | Min | Тур  | Max | Unit |
|-------------------------------|------------|-----|------|-----|------|
| Gain                          | $G_ps$     | 18  | 19.5 | _   | dB   |
| Drain Efficiency              | $\eta_{D}$ | 32  | 34   | _   | %    |
| Adjancent Channel Power Ratio | ACPR       | _   | -35  | -33 | dBc  |

All published data at  $T_{CASE} = 25^{\circ}C$  unless otherwise indicated

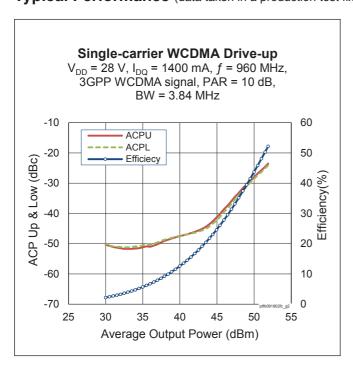
ESD: Electrostatic discharge sensitive device—observe handling precautions!

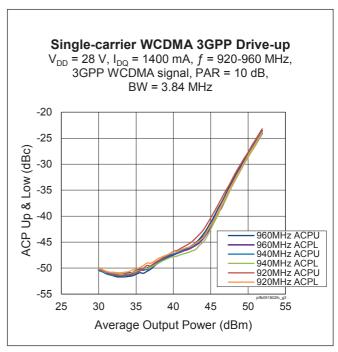


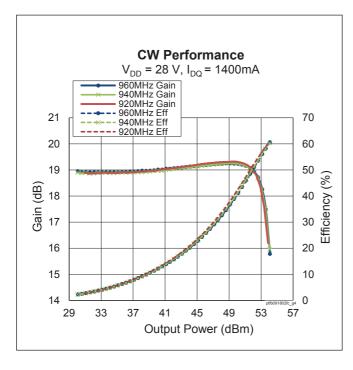
## **DC Characteristics**

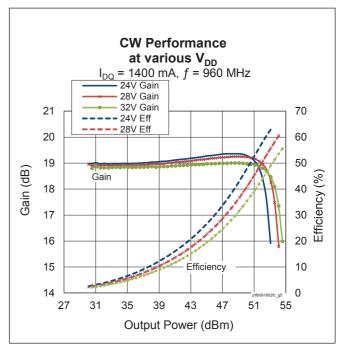
| Characteristic Conditions      |                                                   | Symbol              | Min | Тур  | Max | Unit |  |
|--------------------------------|---------------------------------------------------|---------------------|-----|------|-----|------|--|
| Drain-Source Breakdown Voltage | $V_{GS} = 0 \text{ V}, I_{DS} = 10 \text{ mA}$    | V(BR)DSS            | 65  | _    | _   | V    |  |
| Drain Leakage Current          | V <sub>DS</sub> = 28 V, V <sub>GS</sub> = 0 V     | I <sub>DSS</sub>    | _   | _    | 1   | μΑ   |  |
|                                | $V_{DS} = 63 \text{ V}, V_{GS} = 0 \text{ V}$     | I <sub>DSS</sub>    | _   | _    | 10  | μΑ   |  |
| Gate Leakage Current           | $V_{GS} = 10 \text{ V}, V_{DS} = 0 \text{ V}$     | I <sub>GSS</sub>    | _   | _    | 1   | μΑ   |  |
| On-State Resistance            | $V_{GS} = 10 \text{ V}, V_{DS} = 0.1 \text{ V}$   | R <sub>DS(on)</sub> | _   | 0.15 | _   | Ω    |  |
| Operating Gate Voltage         | $V_{DS} = 28 \text{ V}, I_{DQ} = 1400 \text{ mA}$ | $V_{GS}$            | 2.5 | 3.9  | 4.5 | V    |  |

# **Maximum Ratings**


| Parameter                                               | Symbol           | Value       | Unit |
|---------------------------------------------------------|------------------|-------------|------|
| Drain-Source Voltage                                    | V <sub>DSS</sub> | 65          | V    |
| Gate-Source Voltage                                     | $V_{GS}$         | -6 to +10   | V    |
| Junction Temperature                                    | TJ               | 200         | °C   |
| Storage Temperature Range                               | T <sub>STG</sub> | -40 to +150 | °C   |
| Thermal Resistance (T <sub>CASE</sub> = 70°C, 190 W CW) | $R_{	hetaJC}$    | 0.38        | °C/W |

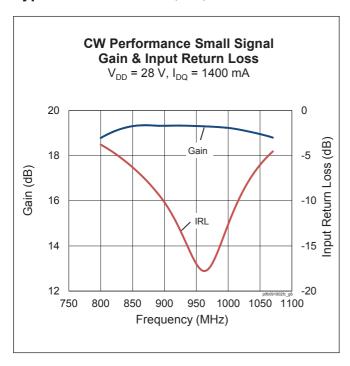

# **Ordering Information**


| Type and Version     | Order Code              | Package Description       | Shipping             |
|----------------------|-------------------------|---------------------------|----------------------|
| PTFB091802FC V1      | PTFB091802FCV1XWSA1     | H-37248-4, earless flange | Tray                 |
| PTFB091802FC V1 R250 | PTFB091802FCV1R250XTMA1 | H-37248-4, earless flange | Tape & Reel, 250 pcs |




## **Typical Performance** (data taken in a production test fixture)





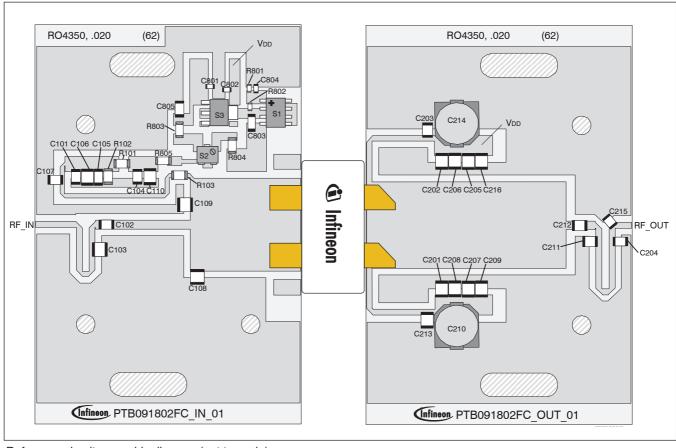







## **Typical Performance** (cont.)




## **Load Pull Performance**

**Load Pull Performance** – Pulsed CW signal: 10  $\mu$ s, 10% duty cycle, 28 V,  $I_{DQ}$  = 1400 mA

|               |                  |                                     | P <sub>1dB</sub> |                           |                         |                       |                   |              |                           |                         |                       |
|---------------|------------------|-------------------------------------|------------------|---------------------------|-------------------------|-----------------------|-------------------|--------------|---------------------------|-------------------------|-----------------------|
|               |                  | Max Output Power Max Drain Efficien |                  |                           | Max Output Power        |                       |                   |              | су                        |                         |                       |
| Freq<br>[MHz] | <b>Zs</b><br>[Ω] | <b>Ζ</b> Ι<br>[Ω]                   | Gain<br>[dB]     | P <sub>OUT</sub><br>[dBm] | P <sub>OUT</sub><br>[W] | η <sub>D</sub><br>[%] | <b>Ζ</b> Ι<br>[Ω] | Gain<br>[dB] | P <sub>OUT</sub><br>[dBm] | P <sub>OUT</sub><br>[W] | η <sub>D</sub><br>[%] |
| 920           | 3.48 – j4.93     | 1.95 – j1.75                        | 17.2             | 51.1                      | 127                     | 55.1                  | 4.47 – j0.46      | 20.2         | 48.9                      | 77                      | 71.0                  |
| 942           | 4.17 – j5.32     | 1.93 – j1.59                        | 18.3             | 50.4                      | 110                     | 56.0                  | 4.77 + j0.06      | 20.8         | 47.8                      | 60                      | 66.4                  |
| 960           | 4.61 – j5.47     | 1.86 – j1.64                        | 18.3             | 50.4                      | 109                     | 56.2                  | 4.23 – j0.33      | 20.6         | 48.2                      | 65                      | 66.9                  |



## Reference Circuit, 920 - 960 MHz

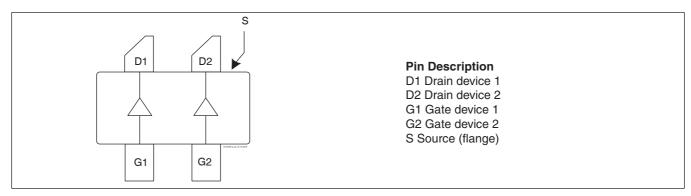


Reference circuit assembly diagram (not to scale)



## Reference Circuit (cont.)

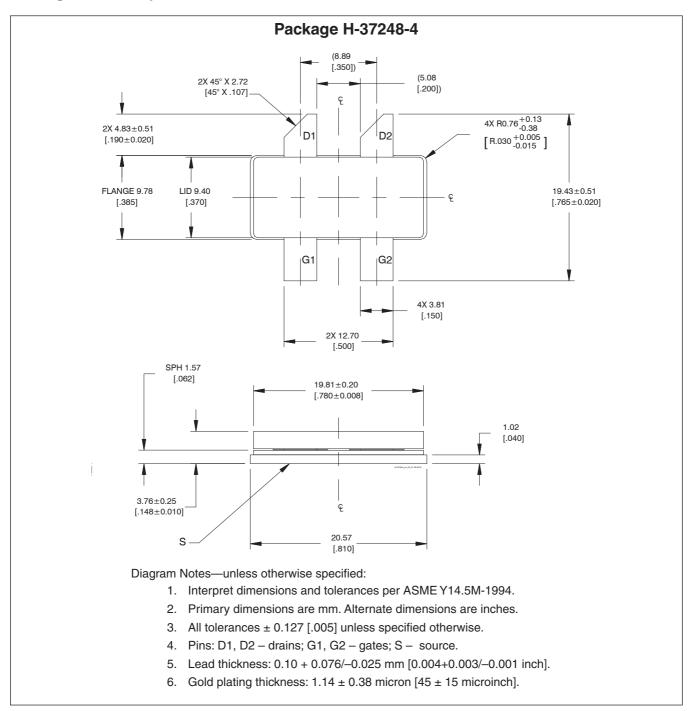
## **Reference Circuit Assembly**


| DUT                                                                                                 | PTFB091802FC V1                                                                                        |  |  |  |
|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--|--|--|
| Test Fixture Part No.                                                                               | LTN/PTFB091802FC V1                                                                                    |  |  |  |
| PCB                                                                                                 | Rogers 4350, 0.508 mm [0.020"] thick, 2 oz. copper, $\varepsilon_{\rm r} = 3.66$ , $f = 920 - 960$ MHz |  |  |  |
| Find Gerber files for this test fixture on the Infineon Web site at http://www.infineon.com/rfpower |                                                                                                        |  |  |  |

### **Components Inform**

| Component                 | Description                | Manufacturer                     | P/N               |
|---------------------------|----------------------------|----------------------------------|-------------------|
| Input                     |                            |                                  |                   |
| C101                      | Capacitor, 33 pF           | ATC                              | ATC100B330JW500XB |
| C102, C107                | CAPACITOR, 56 pF           | ATC                              | ATC100B560JW500XB |
| C103                      | CAPACITOR, 2.6 pF          | ATC                              | ATC100B2R6CW500XB |
| C104                      | CAPACITOR, 4.7 pF          | ATC                              | ATC100B4R7CW500XB |
| C105                      | Tantalum Capacitor, 4.7 μF | AVX Corporation                  | F931C475MAA       |
| C106                      | Capacitor, 20000 pF        | ATC                              | ATC200B203MC      |
| C108, C109                | Capacitor, 3.9 pF          | ATC                              | ATC100B3R9CW500XB |
| C110                      | Capacitor, 10000 pF        | ATC                              | ATC200B103MC      |
| C801, C802, C804          | Capacitor, 1000 pF         | Panasonic Electronic Components  | ECJ-1VB1H102K     |
| C803, C805                | Capacitor, 0.1 μF          | Panasonic Electronic Components  | ECJ-3VB1H104      |
| R101, R102                | Resistor, 220 $\Omega$     | Panasonic Electronic Components  | ERJ-8GEYJ221V     |
| R103, R803, R805          | Resistor, 10 Ω             | Panasonic Electronic Components  | ERJ-8GEYJ100V     |
| R801                      | Resistor, 1300 $\Omega$    | Panasonic Electronic Components  | ERJ-3GEYJ132V     |
| R802                      | Resistor, 1200 $\Omega$    | Panasonic Electronic Components  | ERJ-3GEYJ122V     |
| R804                      | Resistor, 2000 $\Omega$    | Panasonic Electronic Components  | ERJ-8GEYJ202V     |
| S1                        | Transistor                 | Infineon Technologies            | BCP56             |
| S2                        | Potentiometer, $2k \Omega$ | Bourns Inc.                      | 3224W-1-202E      |
| S3                        | Voltage Regulator          | Texas Instruments                | LM78L05ACM        |
|                           |                            |                                  |                   |
| Output                    |                            |                                  |                   |
| C201, C202, C206,<br>C208 | Capacitor, 10 μF           | Taiyo Yuden                      | UMK325C7106MM-T   |
| C203, C212, C213          | Capacitor, 56 pF           | ATC                              | ATC100B560JW500XB |
| C204                      | Capacitor, 2.2 pF          | ATC                              | ATC100B2R2CW500XB |
| C205, C207, C209,<br>C216 | Capacitor, 4.7 μF          | Murata Electronics North America | GRM32ER71H475KA88 |
| C210, C214                | Capacitor, 100 μF          | Panasonic Electronic Components  | EEE-FP1V101AP     |
| C211                      | Capacitor, 1.5 pF          | ATC                              | ATC100B1R5CW500XB |
| C215                      | Capacitor, 1.7 pF          | ATC                              | ATC100B1R7CW500XB |




## Pinout Diagram (top view)



Lead connections for PTFB091802FC



## **Package Outline Specifications**



Find the latest and most complete information about products and packaging at the Infineon Internet page http://www.infineon.com/rfpower

#### PTFB091802FC V1

#### **Revision History**

| Revision | Date       | Data Sheet Type | Page       | Subjects (major changes since last revision)                                                                                                                                   |
|----------|------------|-----------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 01       | 2014-07-22 | Advance         | All        | Data Sheet reflects advance specification for product development                                                                                                              |
| 02       | 2015-03-27 | Production      | AII<br>AII | Data Sheet reflects released product specification Revised all data and includes updated final specs, typical performance graphs, loadpull, reference circuit, package outline |

#### **We Listen to Your Comments**

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to:

#### (highpowerRF@infineon.com)

To request other information, contact us at: +1 877 465 3667 (1-877-GO-LDMOS) USA or +1 408 776 0600 International



Edition 2015-03-27
Published by
Infineon Technologies AG
85579 Neubiberg, Germany
© 2014 Infineon Technologies AG
All Rights Reserved.

#### **Legal Disclaimer**

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

#### Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com/rfpower).

#### Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.