


Fair-Rite Products Corp.

Your Signal Solution®

Ferrite Components for the Electronics Industry

Fair-Rite Products Corp. PO Box J, One Commercial Row, Wallkill, NY 12589-0288
Phone: (888) 324-7748 www.fair-rite.com

Fair-Rite Product's Catalog
Part Data Sheet, 9598404602
Printed: 2012-02-24

Part Number: 9598404602

Frequency Range: Dimensions

Description: 98 EER CORE

Application: Inductive Components

Where Used: Closed Magnetic Circuit

Part Type: EER Cores

Generic Name: EER40/46

Mechanical Specifications

Weight: 80.000 (g)

Part Type Information

EER25.5/18, EER28/28, EER28/34, EER35/42, EER40/46, EER42/44, EER49/54

EER cores, similar to ETD cores, have been designed to make optimum use of a given volume of ferrite material for maximum throughput power. The structure, which includes a round center post, approaches a nearly uniform cross-sectional area that minimizes winding losses.

-EER cores can be supplied with the centerpost gapped to a mechanical dimension.

-EER cores can also be supplied to an AL value, these would be supplied in sets.

Fair-Rite Products Corp.

Your Signal Solution®

Ferrite Components for the Electronics Industry

Fair-Rite Products Corp. PO Box J, One Commercial Row, Wallkill, NY 12589-0288
Phone: (888) 324-7748 www.fair-rite.com

Fair-Rite Product's Catalog
Part Data Sheet, 9598404602
Printed: 2012-02-24

Mechanical Specifications

Dim	mm	mm tol	nominal inch	inch misc.
A	40.00	± 0.7	1.575	-
B	22.90	± 0.3	0.902	-
C	13.30	± 0.3	0.524	-
D	15.90	± 0.3	0.626	-
E	29.50	min	1.161	min
F	13.30	± 0.3	0.524	-
G	-	-	-	-
H	-	-	-	-
J	-	-	-	-
K	-	-	-	-

Electrical Specifications

Typical Impedance (Ω)	
-	-

Electrical Properties	
A_L (nH)	3600 $\pm 25\%$
A_e (cm ²)	1.44000
$\sum I/A$ (cm ⁻¹)	6.90
l_e (cm)	10.00
V_e (cm ³)	14.42000
A_{min} (cm ²)	1.300

Land Patterns

V	W ref	X	Y	Z
-	-	-	-	-
-	-	-	-	-

Winding Information

Turns Tested	Wire Size	1st Wire Length	2nd Wire Length
-	-	-	-

Reel Information

Tape Width mm	Pitch mm	Parts 7 " Reel	Parts 13 " Reel	Parts 14 " Reel
-	-	-	-	-

Package Size

Pkg Size
-

Connector Plate

# Holes	# Rows
-	-

Legend

+ Test frequency

Preferred parts, the suggested choice for new designs, have shorter lead times and are more readily available.

The column H(Oe) gives for each bead the calculated dc bias field in oersted for 1 turn and 1 ampere direct current. The actual dc H field in the application is this value of H times the actual NI (ampere-turn) product. For the effect of the dc bias on the impedance of the bead material, see figures 18-23 in the application note How to choose Ferrite Components for EMI Suppression.

A 1/2 turn is defined as a single pass through a hole.

$\sum I/A$ - Core Constant

A_e - Effective Cross-Sectional Area

A_L - Inductance Factor ($\frac{L}{N^2}$)

N/AWG - Number of Turns/Wire Size for Test Coil

l_e : Effective Path Length

V_e : Effective Core Volume

NI - Value of dc Ampere-turns