

MM54C90, MM74C90, MM54C93, MM74C93

Decade Counter; Binary Counter

The MM54C90/MM74C90 decade counter and the MM54C93/MM74C93 binary counter and complementary MOS (CMOS) integrated circuits constructed with N- and P-channel enhancement mode transistors. The 4-bit decade counter can reset to zero or preset to nine by applying appropriate logic level on the R01, R02, R91, and R92 inputs. Also, a separate flip-flop on the A-bit enables the user to operate it as a divide-by-2, 5, or 10 frequency counter. The 4-bit binary counter can be reset to zero by applying high logic level on inputs R01 and R02, and a separate flip-flop on the A-bit enables the user to operate it as a divide-by-2, -8, or -16 divider. Counting occurs on the negative going edge of the input pulse.

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

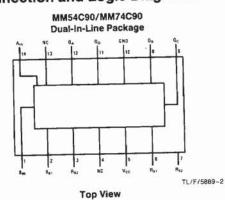
Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
 - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.


National Semiconductor

MM54C90/MM74C90 4-Bit Decade Counter MM54C93/MM74C93 4-Bit Binary Counter

General Description

The MM54C90/MM74C90 decade counter and the MM54C93/MM74C93 binary counter and complementary MOS (CMOS) integrated circuits constructed with N- and P-channel enhancement mode transistors. The 4-bit decade counter can reset to zero or preset to nine by applying appropriate logic level on the R₀₁, R₀₂, R₉₁ and R₉₂ inputs. Also, a separate flip-flop on the A-bit enables the user to operate it as a divide-by-2, 5 or 10 frequency counter. The 4-bit binary counter can be reset to zero by applying high logic level on inputs R₀₁ and R₀₂, and a separate flip-flop on the A-bit enables the user to operate it as a divide-by-2, 5 or -10 frequency counter. The 4-bit binary counter can be reset to zero by applying high logic level on inputs R₀₁ and R₀₂, and a separate flip-flop on the A-bit enables the user to operate it as a divide-by-2, -8, or -16 divider. Counting occurs on the negative going edge of the input pulse.

Connection and Logic Diagrams

All inputs are protected against static discharge damage.

■ The MM54C93/MM74C93 follows the

3V to 15V

0.45 VCC (typ.)

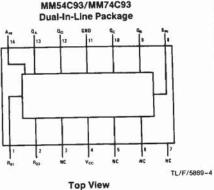
Fan out of 2

driving 74L

MM54L93/

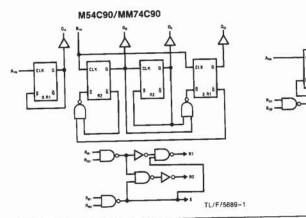
1V

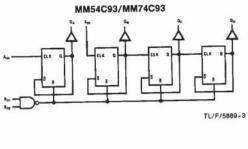
Features


Low power

Wide supply voltage range

Guaranteed noise margin


High noise immunity


TTL compatiblity

*Please look into Section 8, Appendix D for availability of various package types.

6-54

Voltage at Any Pin (Note 1) -0.3V to V	Small Outline 500 mV
Operating Temperature Range (T _A)	Vcc + 0.3V Operating V _{CC} Range 3V to 15 Absolute Maximum V _{CC} 18
	to + 125°C Storage Temperature Range (T _S) -65°C to + 150°C Lead Temperature (T _L) (Soldering, 10 seconds) 260°C

Symbol	Parameter	Conditions	Min	Тур	Max	Units
CMOS TO CM	NOS			<u>/P</u>	INGA	Unite
V _{IN(1)}	Logical "1" Input Voltage	$V_{CC} = 5V$ $V_{CC} = 10V$	3.5 8.0			v v
V _{IN(0)}	Logical "0" Input Voltage	$V_{CC} = 5V$ $V_{CC} = 10V$			1.5 2.0	V V
V _{OUT(1)}	Logical "1" Output Voltage	$V_{CC} = 5V, I_{O} = -10 \ \mu A$ $V_{CC} = 10V, I_{O} = -10 \ \mu A$	4.5 9.0		2.0	V V
VOUT(0)	Logical "0" Output Voltage	$V_{CC} = 5V, I_O = +10 \mu A$ $V_{CC} = 10V, I_O = +10 \mu A$			0.5	v v
lin(1)	Logical "1" Input Current	$V_{CC} = 15V, V_{IN} = 15V$	-	0.005	1.0	μA
lin(0)	Logical "0" Input Current	$V_{CC} = 15V, V_{IN} = 0V$	-1.0	-0.005		<u>μΑ</u>
loc	Supply Current	$V_{CC} = 15V$		0.05	300	<u>μ</u> Α
CMOS/LPTTI	INTERFACE			0.00	000	μΛ
VIN(1)	Logical "1" Input Voltage MM54C90, MM54C93 MM74C90, MM74C93	$V_{CC} = 4.5V$ $V_{CC} = 4.75V$	V _{CC} -1.5 V _{CC} -1.5			v
VIN(0)	Logical "0" Input Voltage MM54C90, MM54C93 MM74C90, MM74C93	$V_{CC} = 4.5V$ $V_{CC} = 4.75V$			0.8 0.8	v
V _{OUT(1)}	Logical "1" Output Voltage MM54C90, MM54C93 MM74C90, MM74C93	$V_{CC} = 4.5V, I_O = -360 \ \mu A$ $V_{CC} = 4.75V, I_O = -360 \ \mu A$	2.4 2.4		0.8	v
VOUT(0)	Logical "0" Output Voltage MM54C90, MM54C93 MM74C90, MM74C93	$V_{CC} = 4.5V, I_{O} = -360 \mu A$ $V_{CC} = 4.75V, I_{O} = -360 \mu A$			0.4	v v
OUTPUT DRIV	/E (See 54C/74C Family Charac	cteristics Data Sheet) (Short Circu	it Current)		0.4	
ISOURCE	Output Source Current (P-Channel)	$V_{CC} = 5V, V_{OUT} = 0V$ $T_A = 25^{\circ}C$	-1.75	-3.3		mA
ISOURCE	Output Source Current (P-Channel)		-8.0	- 15		mA
ISINK	Output Sink Current (N-Channel)	$V_{CC} = 5V, V_{OUT} = V_{CC}$ $T_A = 25^{\circ}C$	1.75	3.6		mA
	0.1.10.10					

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range", they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

8.0

16

AC Electrical	Characteristics*	$T_A = 25^{\circ}C_{I}C_{I} =$	50 pF, unless otherwise specified

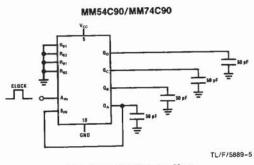
Output Sink Current (N-Channel)

SINK

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{pd0} , t _{pd1}	Propagation Delay Time from A _{IN} to Q _A	$V_{CC} = 5V$ $V_{CC} = 10$		200 80	400 150	ns
tpd0, tpd1	Propagation Delay Time from A _{IN} to Q _B (MM54C93/MM74C93)	$V_{CC} = 5V$ $V_{CC} = 10V$		450 160	850 300	ns
t _{pd0} , t _{pd1}	Propagation Delay Time from A _{IN} to Q _B (MM54C90/MM74C90)	$V_{CC} = 5V$ $V_{CC} = 10V$		450 160	800 300	ns

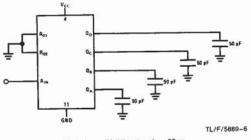
6

mA

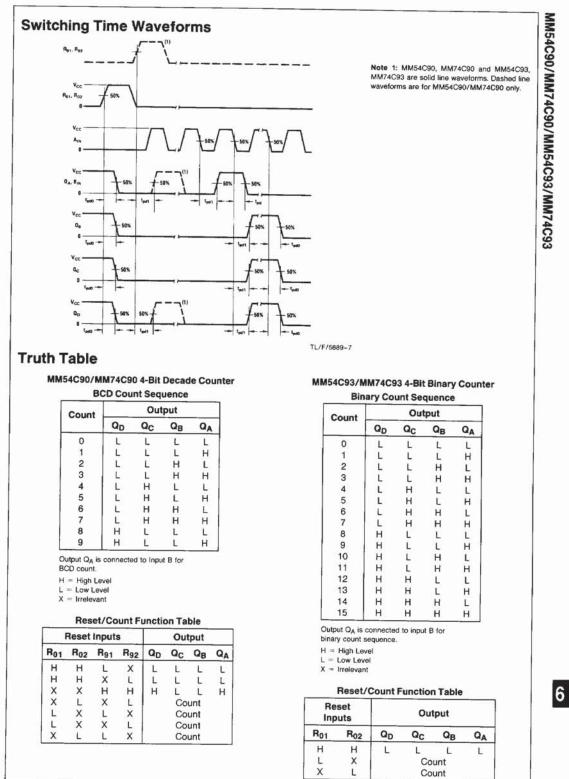

Symbol	etrical Characteristics* T _A = 2	Conditions	Min	Тур	Max	Units
t _{pd0} , t _{pd1}	Propagation Delay Time from A _{IN} to Q _C (MM54C93/MM74C93)	$V_{CC} = 5V$ $V_{CC} = 10$		500 200	1050 400	ns ns
t _{pd0} , t _{pd1}	Propagation Delay Time from A _{IN} to Q _C (MM54C93/MM74C93)	$V_{CC} = 5V$ $V_{CC} = 10V$		500 200	1000 400	ns ns
t _{pd0} , t _{pd1}	Propagation Delay Time from AIN to QD (MM54C93/MM74C93)	$V_{CC} = 5V$ $V_{CC} = 10V$		600 250	1200 500	ns ns
t _{pd0} , t _{pd1}	Propagation Delay Time from A _{IN} to Q _D (MM54C90/MM74C90)	$V_{CC} = 5V$ $V_{CC} = 10V$		450 160	800 300	ns ns
tpd0, tpd1	Propagation Delay Time from R ₀₁ or R ₀₂ to Q _A , Q _B , Q _C or Q _D (MM54C93/MM74C93)	$V_{CC} = 5V$ $V_{CC} = 10V$		150 75	300 150	ns ns
t _{pd0} , t _{pd1}	Propagation Delay Time from R_{01} or R_{02} to Q_A , Q_B , Q_C or Q_D (MM54C90/MM74C90)	$V_{CC} = 5V$ $V_{CC} = 10V$		200 75	400 150	ns ns
t _{pd0} , t _{pd1}	Propagation Delay Time from Rg1 or Rg2 to QA or QD (MM54C90/MM74C90)	$\begin{array}{l} V_{CC}=5V\\ V_{CC}=10V \end{array}$		250 100	500 200	ns ns
tpw	Min. R ₀₁ or R ₀₂ Pulse Width (MM54C93/MM74C93)	$V_{CC} = 5V$ $V_{CC} = 10V$	600 30	250 125		ns ns
t _{PW}	Min. R ₀₁ or R ₀₂ Pulse Width (MM54C90/MM74C90)	$V_{CC} = 5V$ $V_{CC} = 10V$	600 300	250 125		ns ns
t _{PW}	Min. R ₉₁ or R ₉₂ Pulse Width (MM54C90/MM74C90)	$V_{CC} = 5V$ $V_{CC} = 10V$	500 250	200 100		ns ns
t _r , t _f	Maximum Clock Rise and Fall Time	$V_{CC} = 10V$ $V_{CC} = 10V$			15 5	μs μs
tw	Minimum Clock Pulse Width	$V_{CC} = 5V$ $V_{CC} = 10V$	250 100	100 50		ns ns
f _{MAX}	Maximum Clock Frequency	$V_{CC} = 5V$ $V_{CC} = 10V$	2 5			MH: MH:
CIN	Input Capacitance	Any Input (Note 2)		5		pF
CPD	Power Dissipation Capacitance	Per Package (Note 3)		45	-	pF

*AC Parameters are guaranteed by DC correlated testing.

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range", they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.


Note 3: CpD determines the no load ac power consumption of any CMOS device. For complete explanation see 54C/74C Family Characteristics application note— AN-90.

AC Test Circuits


Clock rise and fall time $t_{\rm f}=\,t_{\rm f}=\,20~{\rm ns}$

MM54C93/MM74C93

Clock rise and fall time $t_{\rm f}=t_{\rm f}=20~{\rm ns}$

6-56

