

SOTINY[™] Low-Voltage, Single-Supply, 1-Ohm SPST CMOS Analog Switches

Features

- 1-ohm max. On-Resistance
- 0.15-ohm max. On-Resistance Flatness at +25°C
- · Fast Switching

 $t_{ON} = 50$ ns max.

 $t_{OFF} = 50$ ns max.

- +1.8V to +5.5V Single-Supply Operation
- TTL/CMOS-Logic Compatible
- –57dB Off-Isolation at 1MHz
- 4nA max. Off-Leakage at +25°C
- · Packaging:
 - 5-Pin SOT-23 (T)

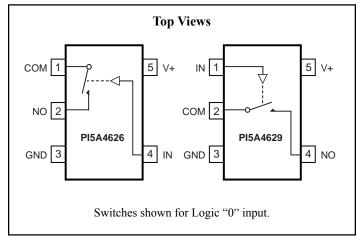
Description

PI5A4626/PI5A4629, single-pole/single-throw (SPST) analog switches that operate from a single +1.8V to +5.5V supply, are normally open (NO). The PI5A4629 pinout is optimized for the highest SOT-23 package off-isolation available.

These switches have 1-ohm max On-resistance (R_{ON}), with 0.12-ohm max R_{ON} flatness over the analog signal range when powered from a +5V supply. Leakage currents are 0.5nA and fast switching times are less than 50ns. They are packaged in a compact 5-pin SOT-23 package.

Applications

- Cellular Phones Communications Circuits
- Battery-Operated Equipment DSL Modems
- · Audio and Video Signal Routing · PCMCIA Cards


Pin Description

Pin		Name	Function
4626	4629	Name	runction
1	2	COM	Analog Switch, Common
2	4	NO	Analog Switch, Normally Open
3	3	GND	Ground
4	1	IN	Digital Control Input
5	5	V+	Positive Supply Voltage

Note:

NO, NC, and COM pins are identical and interchangeable. Any pin may be considered as an input or an output; signals pass

Functional Block Diagrams/Pin Configurations

Truth Table

Innut	Switch State			
Input	PI5A4626 / PI5A4629			
LOW	OFF			
HIGH	ON			

Absolute Maximum Ratings

Voltages Referenced to GND V+	-0.5V to +5.5V
V _{IN} , V _{COM} , V _{NC} , V _{NO} (Note 1)or 30mA, whichever occurs first	
Current (any terminal)	±200mA
Peak Current, COM, NO, NC (Pulsed at 1ms, 10% duty cycle)	±400mA

Thermal Information

Continuous Power Dissipation	
SOT-23 (derate 7.1mW/°C above +70°C)	0.5W
Storage Temperature	65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C

Note:

1. Signals on NC, NO, COM, or IN exceeding V+ or GND are clamped by internal diodes. Limit forward diode current to 30mA.

Caution: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied.

Electrical Specifications - Single +5V Supply

 $(V + = +5V \pm 10\%, GND = 0V, V_{INH} = 2.4V, V_{INL} = 0.8V)$

Paramenter	Description	Test Conditions	Temp.(°C)	Min. ⁽¹⁾	Typ.(2)	Max. ⁽¹⁾	Units	
Analog Switch								
Analog Signal Range ⁽³⁾	V _{ANALOG}		Full	0		V+	V	
On Resistance	D		25		0.5	0.9		
	R _{ON}	$V+ 4.5V, I_{COM} = -30 \text{mA},$	Full			1.1		
On-Resistance Match	$\Delta R_{ m ON}$	V_{NO} or $V_{NC} = -2.5V$	25		0.03	0.05	01	
Between Channels (4)			Full			0.10	Ohm	
On-Resistance	R _{FLAT(ON)}	V+ =5V,	25		0.08	0.12		
Flatness ⁽⁵⁾		$I_{COM} = -30 \text{mA},$ V_{NO} or $V_{NC} = 1 \text{V}, -2.5 \text{V}, 4 \text{V}$	Full			0.15		
NO or NC Off Leakage Current ⁽⁶⁾	I _{COM(OFF)} or I _{NC(OFF)}	V+ =5.5V,	25	2	0.01	2		
		$V_{COM} = 0V,$ V_{NO} or $V_{NC} = 4.5V$	Full	-20		20		
COM On Leakage		V+ =5.5V,	25	-4		4	nA	
Current ⁽⁶⁾	I _{COM(ON)}	$V_{COM} = +4.5$ V_{NO} or $V_{NC} = +4.5V$	Full	-40	0.3	40		

2

PS8641A 06/27/04

Electrical Specifications - Single +5V Supply (continued)

 $(V+=+5V\pm 10\%, GND=0V, V_{INH}=2.4V, V_{INL}=0.8V)$

Parameter	Symbol	Conditions	Temp(°C)	Min. (1)	Тур.(2)	Max. (-	Units
Logic Input	-		!				
Input High Voltage	V _{IH}	Guaranteed logic High Level Guaranteed logic Low Level		2.4			V
Input Low Voltage	V _{IL}					0.8	V
Input Current with Voltage High	I_{INH}	$V_{\rm IN} = 2.4 \text{V}$, all others = 0.8V	Full	-1	0.005	1	4
Input Current with Voltage Low	I _{INL}	$V_{IN} = 0.8V$, all others = 2.4V		-1	0.005	1	μA
Dynamic							
Turn-On Time		$V+=5V$, V_{NO} or $V_{NC}=$	25		20	35	ns
	t _{ON}		Full			40	
Turn-Off Time	$t_{ m OFF}$	2.5V, Figure 1	25		15	20	
			Full			35	
Charge Injection ⁽³⁾	Q	$C_L = 1$ nF, $V_{GEN} = 0$ V, $R_{GEN} = 0$ Ohm, Figure 2	25		40		pC
Off Isolation	OIRR	$R_L = 50 \text{ Ohms},$ f = 1 MHz, Figure 3			-57		ID
Crosstalk ⁽⁸⁾	X _{TALK}	$R_L = 50 \text{ Ohms},$ f = 1 MHz, Figure 4			-57		dB
NC or NO Capacitance	C _(OFF)	f - 1MII - Figure 5			83		
COM Off Capacitance	C _{COM(OFF)}	f = 1MHz, Figure 5			83		pF
COM On Capacitance	C _{COM(ON)}	f = 1MHz, Figure 6			170		
Supply							
Power-Supply Range	V+		Full	1.8		5.5	V
Positve Supply Current	I+	$V_{CC} = 5.5V, V_{IN} = 0V \text{ or } V+$	rull		0.5	1	μА

Notes:

1. The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.

- 2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
- 3. Guaranteed by design.
- 4. $\Delta R_{ON} = R_{ON} \text{ max.} R_{ON} \text{ min.}$
- 5. Flatness is defined as the difference between the maximum and minimum value of On-resistance measured.
- 6. Leakage parameters are 100% tested at maximum rated hot temperature and guaranteed by correlation at +25°C.
- 7. Off Isolation = $20\log_{10} [V_{COM}/(V_{NO} \text{ or } V_{NC})]$. See Figure 3.
- 8. Between any two switches. See Figure 4.

Electrical Specifications - Single +3.3V Supply

 $(V + = +3.3V \pm 10\%, GND = 0V, V_{INH} = 2.0V, V_{INL} = 0.6V)$

Paramenter	Description	Test Conditions	Temp.(°C)	Min.(1)	Typ.(2)	Max. ⁽¹⁾	Units	
Analog Switch						,		
Analog Signal Range ⁽³⁾	V _{ANALOG}			0		V+	V	
On Resistance	D	$V += 3V$, $I_{COM} = -24mA$,	25		1.0	1.8		
On Resistance	R _{ON}	V_{NO} or $V_{NC} = 2.0V$	Full			2.2		
On-Resistance Match	Δ R _{ON}		25		0.04	0.5	Ohm	
Between Channels (4)	Δ K _{ON}	$V+=3.3V$, $I_{COM} = -24mA$,	Full		0.11		Onm	
On-Resistance Flatness ^(3,5)	D	V_{NO} or $V_{NC} = 0.8V$, 2.0V	25		0.17	0.2		
	R _{FLAT(ON)}		Full		0.25			
Dynamic				,		,		
Turn-On Time			25		30	40	ns	
	t _{ON}		Full			55		
T. 0.00T	$t_{ m OFF}$	$V+=3.3V$, V_{NO} or $V_{NC}=2.0V$, Figure 1	25		20	25		
Turn-Off Time			Full			40		
Charge Injection ⁽³⁾	Q	$C_L = 1$ nF, $V_{GEN} = 0$ V, $R_{GEN} = 0$ V, Figure 2	25		30		рC	
Supply								
Positive Supply Current	I+	$V+=3.6V, V_{\rm IN}=0V \ {\rm or} \ V+$ All channels on or off	Full		0.5	1	μА	
Logic Input				'				
Input HIGH Voltage	V _{IH}	Guaranteed logic high level	Full	2			V	
Input LOW Voltage	V _{IL}	Guaranteed logic Low level	Full			0.6	V	
Input HIGH Current	I _{INH}	V_{IN} =2.4V, all others = 0.8V	Full	-1		1		
Input HIGH Current	I _{INL}	V _{IN} =0.8V, all others =2.4V	Full	-1		1	μА	

Notes:

1. The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.

- 2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
- 3. Guaranteed by design.
- 4. $\Delta R_{ON} = R_{ON} \text{ max.} R_{ON} \text{ min.}$
- 5. Flatness is defined as the difference between the maximum and minimum value of On-resistance measured.

Electrical Specifications - Single +2.5V Supply

 $(V + = +2.5V \pm 10\%, GND = 0V, V_{INH} = 1.8V, V_{INL} = 0.6V)$

Paramenter	Description	Test Conditions	Temp.(°C)	Min.(1)	Typ.(2)	Max. ⁽¹⁾	Units
Analog Switch							
Analog Signal Range ⁽³⁾	V _{ANALOG}			0		V+	V
On Resistance	D	$V+=2.5V$, $I_{COM} = -8mA$,	25		1.5	2	
On Resistance	R _{ON}	V_{NO} or $V_{NC} = 1.8V$	Full			2.7	
On-Resistance Match	A D		25		0.13	0.16	Ohm
Between Channels (4)	Δ R _{ON}	$V+=2.5V$, $I_{COM} = -8mA$,	Full		0.2		Onm
On-Resistance Flatness ^(3,5)	D	$V_{NO} \text{ or } V_{NC} = 0.8V, 1.8V$	25		0.25	0.3	
On-Resistance Flatness	R _{FLAT(ON)}		Full		0.45		
Dynamic							
Turn-On Time	t _{ON}		25		40	55	
			Full			70	ns
T. 0.77	t _{OFF}	V+=2.5V, V_{NO} or V_{NC} = 1.8V, Figure 1	25		30	40	
Turn-Off Time			Full			55	
Charge Injection ⁽³⁾	Q	$C_L = 1$ nF, $V_{GEN} = 0$ V, $R_{GEN} = 0$ V, Figure 2	25		20		pC
Supply							
Positive Supply Current	I+	$V+=2.75V$, $V_{\rm IN}=0V$ or $V+$ All channels on or off	Full		0.5	1	μΑ
Logic Input							
Input HIGH Voltage	V _{IH}	Guaranteed logic high level	Full	1.8			V
Input LOW Voltage	V_{IL}	Guaranteed logic Low level	Full			0.6	V
Input HIGH Current	I_{INH}	$V_{\rm IN}$ =2.0V, all others = 0.8V	Full	-1		1	
Input HIGH Current	I _{INL}	V _{IN} =0.8V, all others =2.0V	Full	-1		1	μA

Notes:

1. The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.

5

- 2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
- 3. Guaranteed by design.
- 4. $\Delta R_{ON} = R_{ON} \text{ max.} R_{ON} \text{ min.}$
- 5. Flatness is defined as the difference between the maximum and minimum value of On-resistance measured.

PS8641A 06/27/04

Electrical Specifications - Single +1.8V Supply

 $(V + = +1.8V \pm 10\%, GND = 0V, V_{INH} = 1.5V, V_{INL} = 0.6V)$

Paramenter	Description	Test Conditions	Temp.(°C)	Min.(1)	Typ.(2)	Max. ⁽¹⁾	Units	
Analog Switch								
Analog Signal Range ⁽³⁾	V _{ANALOG}			0		V+	V	
On Resistance	D	$V+=1.8V$, $I_{COM} = -2mA$,	25		2.0	4		
On resistance	R _{ON}	V_{NO} or $V_{NC} = 1.5V$	Full			5		
On-Resistance Match	A D		25		0.44	0.6	Ohm	
Between Channels (4)	Δ R _{ON}	$V+=1.8V$, $I_{COM} = -2mA$,	Full		0.7		Onm	
On-Resistance Flatness ^(3,5)	D	$V_{NO} \text{ or } V_{NC} = 0.6 \text{V}, 1.5 \text{V}$	25		0.5	0.6		
	R _{FLAT(ON)}		Full		0.9			
Dynamic								
Turn-On Time	t _{ON}	$V+=1.8V$, V_{NO} or $V_{NC}=1.5V$, Figure 1	25		65	70	ns	
			Full			95		
T. 0 MT.	.		25		40	55		
Turn-Off Time	t _{OFF}		Full			70		
Charge Injection ⁽³⁾	Q	$C_L = 1 \text{nF}, V_{GEN} = 0 \text{V}, R_{GEN} = 0 \text{V}, \text{ Figure 2}$	25		10		pC	
Supply								
Positive Supply Current	I+	$V+=2.0V,\ V_{IN}=0V\ or\ V+$ All channels on or off	Full		0.5	1	μА	
Logic Input								
Input HIGH Voltage	$V_{ m IH}$	Guaranteed logic high level	Full	1.5			V	
Input LOW Voltage	V _{IL}	Guaranteed logic Low level	Full			0.6	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
Input HIGH Current	I _{INH}	$V_{\rm IN}$ =1.5V, all others = 0.8V	Full	-1		1	4	
Input HIGH Current	I _{INL}	V_{IN} =0.8V, all others =1.5V	Full	-1		1	μA	

Notes:

1. The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.

- 2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
- 3. Guaranteed by design.
- 4. $\Delta R_{ON} = R_{ON} \text{ max.} R_{ON} \text{ min.}$
- 5. Flatness is defined as the difference between the maximum and minimum value of On-resistance measured.

Test Circuits/Timing Diagrams

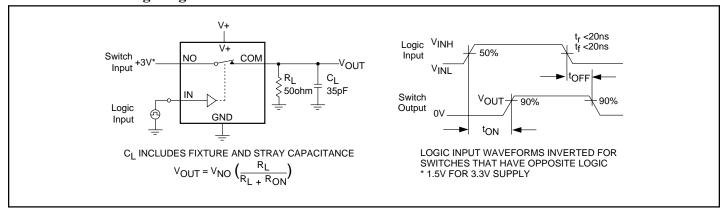


Figure 1. Switching Time

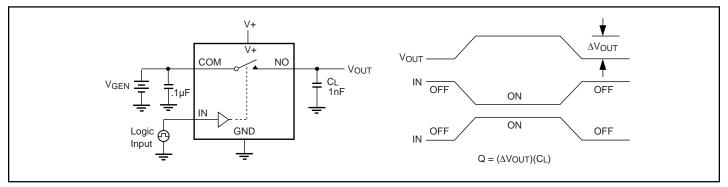


Figure 2. Charge Injection

7

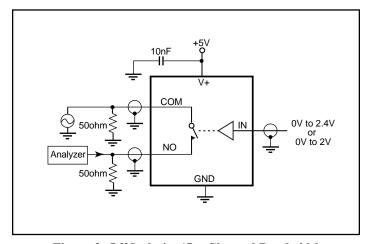


Figure 3. Off Isolation/On-Channel Bandwidth

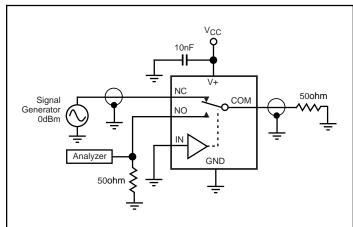
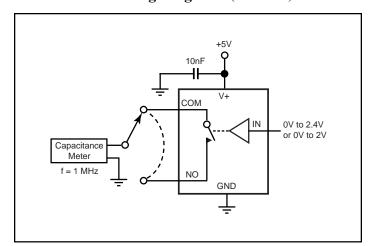
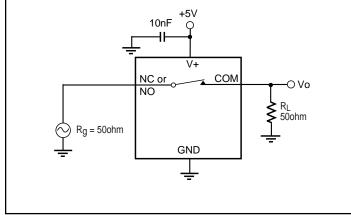



Figure 4. Crosstalk

PS8641A 06/27/04

Test Circuits/Timing Diagrams (continued)



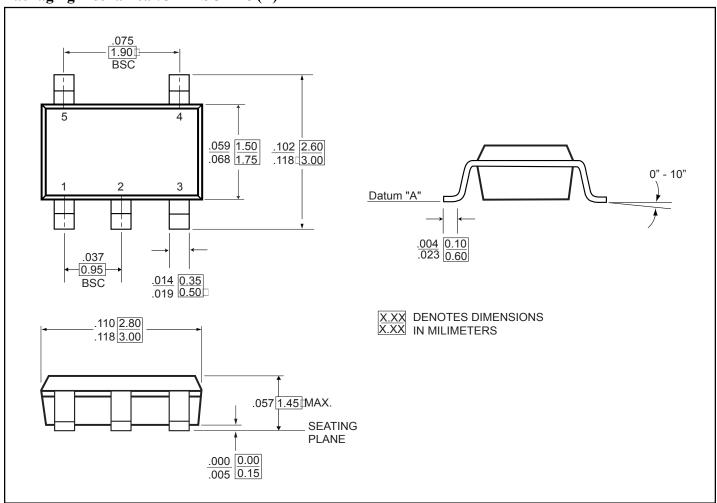

Figure 5. Channel On/Off Capacitance

Figure 6. Bandwidth

PS8641A 06/27/04

Packaging Mechanical: 5-Pin SOT-23 (T)

Ordering Information

Ordering Code	Package Code	Package Description	Top Marking
PI5A4626TX	T	5-pin SOT-23	ZI
PI5A4629TX	T	5-pin SOT-23	ZH

Notes:

- Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- X = Tape and reel
- Number of transistors: 604 (both devices)

Pericom Semiconductor Corporation • 1-800-435-2336 • http://www.pericom.com 9