

AH9280

Two Phase Dual-coil High Voltage Smart Fan Motor Driver

General Description

The AH9280 is a most advanced smart fan controller and Hall IC driver manufactured by special CMOS process. It is designed for 5V and 12V cooling fan. To allow survival in a harsh environment and lower the total system cost, the AH9280 has been designed with many powerful functions while almost eliminating all discrete components, such as, capacitor, resistor, transistor, diode and PC board.

The AH9280 can operate normally in an ambient temperature up to 125°C due to its Hall IC circuitry and power MOSFET output that allow low power dissipation.

When there is no motion for one second, the IC will automatically detect the locked rotor conditions, and enter protection mode, shutting off the motor driver for five seconds. Then, the IC will turn on the motor driver for one second to detect whether there is rotation condition, if fails, the IC will shut off motor driver for five seconds again. This sequence will be repeated until rotation condition is detected, and the IC enters normal operation. This feature can effectively prevent the AH9280 from overheating and damage due to long-time locked rotor condition.

Specially designed for driving large fans, the AH9280 is optimized for low start-up voltage.

The AH9280 is available in TO-94 package.

Features

- High-sensitivity Integrated Hall Sensor
- Low Start-up Voltage
- 5V and 12V Operation
- Peak Output Current up to 1200mA
- Power-efficient CMOS and Power MOSFETs
- Built-in Output Protection Clamping Diode
- Locked Rotor Shutdown and Auto-restart
- ESD Rating: 6000V (Human Body Model) 400V (Machine Model)

Applications

- 5V/12V DC Brushless Motor/Fan
- PC, Server, Laptop Cooling Fan
- Power Supply Cooling Fan
- Large/Small Sized Fan

Pin Configuration

Figure 2. Pin Configuration of AH9280 (Front View)

Pin Description

Pin Number	Pin Name	Function
1	VCC	Power supply pin
2	DO	Output pin 1
3	DOB	Output pin 2
4	GND	Ground pin

AH9280

Functional Block Diagram

Figure 3. Functional Block Diagram of AH9280

Ordering Information

Package	Temperature Range	Part Number	Marking ID	Packing Type	
TO-94	-40 to 125°C	AH9280Z4-G1	9280Z4-G1	Bulk	

BCD Semiconductor's Pb-free products, as designated with "G1" suffix in the part number, are RoHS compliant and green.

Oct. 2011 Rev. 1. 2

AH9280

Absolute Maximum Ratings (Note 1, T_A=25°C)

Parameter	Symbol	Value	Unit
Supply Voltage	V _{CC}	18	V
Peak Output Current	I _{OUT_P}	1200	mA
Continuous Output Current	I _{OUT_C}	600	mA
Supply Current (Fault)	I _{CC}	6	mA
Power Dissipation	P _D	600	mW
Thermal Resistance (Junction to Ambient)	θ_{JA}	208	°C/W
Storage Temperature	T _{STG}	-55 to 150	°C
ESD (Human Body Model)	ESD	6000	V
ESD (Machine Model)	ESD	400	V

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit
Supply Voltage	V _{CC}	2.5	16	V
Ambient Temperature	T _A	-40	125	°C

AH9280

Electrical Characteristics

$\mathbf{V} = 10\mathbf{V}\mathbf{T}$	-2500	1	- 41	: C: 1
V_{CC} =12V, T_A	=23°C,	unless	otherwise	specified.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Supply Voltage	V _{CC}	Operating	2.5	12	16	V
Supply Current	I _{CC}	Average		4	6	mA
Output Current	I _{OUT}				500	mA
Output Leakage Current	I _{LEAKAGE}			0.1	10	μΑ
Saturation Voltage	V _{SAT}	I _{OUT} =350mA		600	1000	mV
Output On Time	T _{ON}			0.8		S
Output Off Time	T _{OFF}			5		S
Output Zener Break-down Voltage	Vz			35		V

Magnetic Characteristics

 V_{CC} =12V, T_A =25°C, unless otherwise specified.

Parameter	Symbol	Min	Тур	Max	Unit
Operating Point	B _{OP}		20	50	Gauss
Releasing Point	B _{RP}	-50	-20		Gauss
Hysteresis	B _{HYS}		40		Gauss

Magnetic Flux Density (Gauss)

Test Circuit

Figure 4. Basic Test Circuit of AH9280

Figure 6. V_{DOB} vs. Magnetic Flux Density

Typical Performance Characteristics

Figure 7. Supply Current vs. Supply Voltage

Figure 8. Supply Current vs. Ambient Temperature

Figure 9. $B_{\text{OP}}/B_{\text{RP}}/B_{\text{HYS}}\,vs.$ Supply Voltage

Figure 10. Saturation Voltage vs. Ambient Temperature

Typical Performance Characteristics (Continued)

Figure 11. Saturation Voltage vs. Output Current

Figure 12. Power Dissipation vs. Ambient Temperature

Figure 13. BOP/BRP/BHYS vs. Ambient Temperature

Oct. 2011 Rev. 1. 2

Typical Application

Figure 14 Typical Application 1 of AH9280 (Note 2)

Note 2:

1. D1 is an ordinary diode used to filter the noise from VCC and protect IC if VCC and GND are plugged reversed.

2. R1=47 Ω typical.

3. C1=C2=C3=2.2 μ F typical, electrolytic capacitors are better. They should be fine tuned based on system design.

4. R2=R3=4.7 Ω typical. They can be removed according to system requirement.

Typical Application (Continued)

Figure 15. Typical Application 2 of AH9280 (Note 3)

Note 3:

- 1. D1 is an ordinary diode used to filter the noise from VCC and protect IC if VCC and GND are plugged reversed.
- 2. R1=47 Ω typical.
- 3. C1 = 2.2μ F typical, electrolytic capacitors are better. They should be fine tuned based on system design.
- 4. ZD1 and ZD2 breakdown voltage are 35V.

TO-94

Mechanical Dimensions

Unit: mm(inch)

BCD Semiconductor Manufacturing Limited

http://www.bcdsemi.com

IMPORTANT NOTICE

BCD Semiconductor Manufacturing Limited reserves the right to make changes without further notice to any products or specifications herein. BCD Semiconductor Manufacturing Limited does not assume any responsibility for use of any its products for any particular purpose, nor does BCD Semiconductor Manufacturing Limited assume any liability arising out of the application or use of any its products or circuits. BCD Semiconductor Manufacturing Limited does not convey any license under its patent rights or other rights nor the rights of others.

MAIN SITE

- Headquarters

BCD Semiconductor Manufacturing Limited No. 1600, Zi Xing Road, Shanghai ZiZhu Science-based Industrial Park, 200241, China Tel: +86-21-24162266, Fax: +86-21-24162277

REGIONAL SALES OFFICE Shenzhen Office

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd., Shenzhen Office Unit A Room 1203, Skyworth Bldg., Gaoxin Ave.1.S., Nanshan District, Shenzhen, China Tel: +86-755-8826 7951

Tel: +86-755-8826 7951 Fax: +86-755-8826 7865

- Wafer Fab

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd. 800 Yi Shan Road, Shanghai 200233, China Tel: +86-21-6485 1491, Fax: +86-21-5450 0008

Taiwan Office

BCD Semiconductor (Taiwan) Company Limited 4F, 298-1, Rui Guang Road, Nei-Hu District, Taipei, Taiwan Tel: +886-2-2656 2808

Tel: +886-2-2656 2808 Fax: +886-2-2656 2806 USA Office BCD Semiconductor Corp. 30920 Huntwood Ave. Hayward, CA 94544, USA Tel : +1-510-324-2988 Fax: +1-510-324-2788