BOURNS® - Designed for Complementary Use with the TIP2955 Series - 90 W at 25°C Case Temperature - 15 A Continuous Collector Current - Customer-Specified Selections Available Pin 2 is in electrical contact with the mounting base. MDTRAAA # absolute maximum ratings at 25°C case temperature (unless otherwise noted) | RATING | SYMBOL | VALUE | UNIT | |--|-------------------------------|-------------|------| | Collector-base voltage (I _E = 0) | V _{CBO} | 100 | V | | Collector-emitter voltage (I _B = 0) (see Note 1) | VCER | 70 | V | | Emitter-base voltage | VEBO | 7 | V | | Continuous collector current | I _C | 15 | Α | | Continuous base current | I _B | 7 | Α | | Continuous device dissipation at (or below) 25°C case temperature (see Note 2) | P _{tot} | 90 | W | | Continuous device dissipation at (or below) 25°C free air temperature (see Note 3) | P _{tot} | 3.5 | W | | Unclamped inductive load energy (see Note 4) | ½LI _C ² | 62.5 | mJ | | Operating junction temperature range | T _j | -65 to +150 | °C | | Storage temperature range | T _{stg} | -65 to +150 | °C | | Lead temperature 3.2 mm from case for 10 seconds | T _L | 260 | °C | NOTES: 1. This value applies when the base-emitter resistance R_{BE} = 100 Ω . - 2. Derate linearly to 150°C case temperature at the rate of 0.72 W/°C. - 3. Derate linearly to 150°C free air temperature at the rate of 28 mW/°C. - 4. This rating is based on the capability of the transistor to operate safely in a circuit of: L = 20 mH, I_{B(on)} = 0.4 A, R_{BE} = 100 Ω, V_{BE(off)} = 0, R_S = 0.1 Ω, V_{CC} = 10 V. # electrical characteristics at 25°C case temperature | PARAMETER | | TEST CONDITIONS | | | MIN | TYP | MAX | UNIT | |----------------------|---|---|--------------------------|---------------------|---------|-----|----------|------| | V _{(BR)CEO} | Collector-emitter breakdown voltage | I _C = 30 mA | I _B = 0 | (see Note 5) | 60 | | | V | | I _{CER} | Collector-emitter cut-off current | V _{CE} = 70 V | $R_{BE} = 100 \Omega$ | | | | 1 | mA | | I _{CEO} | Collector cut-off current | V _{CE} = 30 V | I _B = 0 | | | | 0.7 | mA | | I _{CEV} | Voltage between base and emitter | V _{CE} = 100 V | V _{BE} = -1.5 V | | | | 5 | mA | | I _{EBO} | Emitter cut-off current | V _{EB} = 7 V | I _C = 0 | | | | 5 | mA | | h _{FE} | Forward current transfer ratio | $V_{CE} = 4 V$ $V_{CE} = 4 V$ | $I_C = 4A$ $I_C = 10A$ | (see Notes 5 and 6) | 20
5 | | 70 | | | V _{CE(sat)} | Collector-emitter saturation voltage | $I_{B} = 0.4 \text{ A}$ $I_{B} = 3.3 \text{ A}$ | $I_C = 4A$ $I_C = 10A$ | (see Notes 5 and 6) | | | 1.1
3 | ٧ | | V_{BE} | Base-emitter voltage | V _{CE} = 4 V | I _C = 4 A | (see Notes 5 and 6) | | | 1.8 | ٧ | | h _{fe} | Small signal forward current transfer ratio | V _{CE} = 10 V | I _C = 0.5 A | f = 1 kHz | 15 | | | | | h _{fe} | Small signal forward current transfer ratio | V _{CE} = 10 V | I _C = 0.5 A | f = 1 MHz | 3 | | | | NOTES: 5. These parameters must be measured using pulse techniques, $t_0 = 300 \,\mu s$, duty cycle $\leq 2\%$. # thermal characteristics | PARAMETER | MIN | TYP | MAX | UNIT | |--|-----|-----|------|------| | R _{0JC} Junction to case thermal resistance | | | 1.39 | °C/W | | R _{0JA} Junction to free air thermal resistance | | | 35.7 | °C/W | # resistive-load-switching characteristics at 25°C case temperature | | PARAMETER | | TEST CONDITIONS † | | MIN | TYP | MAX | UNIT | |----------------|--------------------------------|----------------------|---------------------|------------------------------|-----|-----|-----|------| | t _c | t _{on} Turn-on time | I _C = 6 A | $I_{B(on)} = 0.6 A$ | $I_{B(off)} = -0.6 A$ | | 0.6 | | μs | | t _c | t _{off} Turn-off time | $V_{BE(off)} = -4 V$ | $R_L = 5 \Omega$ | $t_p = 20 \mu s, dc \le 2\%$ | | 1 | | μs | [†] Voltage and current values shown are nominal; exact values vary slightly with transistor parameters. ^{6.} These parameters must be measured using voltage-sensing contacts, separate from the current carrying contacts. #### **TYPICAL CHARACTERISTICS** # TYPICAL DC CURRENT GAIN vs # MAXIMUM SAFE OPERATING REGIONS Figure 2. # THERMAL INFORMATION #### **MAXIMUM POWER DISSIPATION** Figure 3.