


Analog Devices Welcomes Hittite Microwave Corporation

NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

This Gain Block Designer's Kit HMC-DK001 includes samples of 12 of Hittite's most popular gain block SiGe & GaAs HBT MMIC Amplifiers. The table below summarizes the features of each of the products included in this kit. Also included are three evaluation boards, one for each different package style, which enables the designer to test each enclosed sample (Note 1).

Hittite's complete line of Gain Block MMIC amplifiers are offered in industry standard SOT26, MP86 (a.k.a. "Micro-X"), and SOT89 packages, and are targeted to Cellular/3G, Fixed Wireless, CATV, MMDS, WiMAX, WiBro, Microwave Radio and Test Equipment applications from DC to 6 GHz. These Gain Blocks are ideal for use as driver amplifiers, IF gain blocks, high IP3 receive chain amplifiers, and LO buffer amplifiers.

HMC-DK001 - GAIN BLOCKS, DC - 6 GHZ

Part Number	Frequency (GHz)	Function	Gain (dB)	OIP3 (dBm)	NF (dB)	P1dB (dBm)	Bias Supply	Package	Quantity
HMC474MP86E	DC - 6	SiGe Gain Block	15.5	22	3	8	+5V @ 25mA	MP86	10
HMC476MP86E	DC - 6	SiGe Gain Block	20	25	2.5	12	+5V @ 35mA	MP86	10
HMC313E	DC - 6	HBT Gain Block	17	27	6.5	14	+5V @ 50mA	SOT26	10
HMC311ST89E	DC - 6	HBT Gain Block	16	31.5	4.5	15.5	+5V @ 54mA	ST89	10
HMC478MP86E	DC - 4	SiGe Gain Block	22	32	2	18	+5V @ 62mA	MP86	10
HMC478ST89E	DC - 4	SiGe Gain Block	22	33	3	18	+5V @ 62mA	ST89	10
HMC479MP86E	DC - 5	SiGe Gain Block	15	34	4	18	+8V @ 72mA	MP86	10
HMC479ST89E	DC - 5	SiGe Gain Block	15	34	4	18	+8V @ 75mA	ST89	10
HMC481ST89E	DC - 5	SiGe Gain Block	20	33	3.5	19	+8V @ 79mA	ST89	10
HMC480ST89E	DC - 5	SiGe Gain Block	19	34	2.9	20	+8V @ 82mA	ST89	10
HMC481MP86E	DC - 5	SiGe Gain Block	20	33	3.5	20	+8V @ 74mA	MP86	10
HMC482ST89E	DC - 5	SiGe Gain Block	19	36	4	22.5	+8V @ 110mA	ST89	10

Part Number	Description	Quantity
104217 - HMC313	Evaluation Board – Gain Block Amplifier	1
110161 - HMC478ST89	Evaluation Board – Gain Block Amplifier	1
107490 – HMC481MP86	Evaluation Board – Gain Block Amplifier	1

(Note 1) The three evaluation boards included in this kit are fully assembled and tested. In order to test a different amplifier from the kit, the designer must refer to the Application Circuit section of the product data sheet, and assure that the component values for Rbias, L1, C1 and C2 are suited to the intended frequency band and power supply voltage to be used. Data sheets for each of the enclosed samples are available from the enclosed CD, or on-line at www.hittite.com.

