

AS7000 Biosensor

General Description

The AS7000 device provides a flexible analog front end for light sensing applications. The photodiode input circuit can be configured in different ways to guarantee best tradeoff between speed and sensitivity for a large number of different sensing applications.

Ordering Information and Content Guide appear at end of datasheet.

Key Benefits and Features

The benefits and features of AS7000, Biosensor are listed below:

Figure 1: Added Value of Using AS7000

Benefits	Features
 Allows smallest application size e.g. narrow HRM measurement band 	Single device integrated optical solutionIntegrated 32bit Cortex-M0 processor
Good HRM measurement quality	 Low noise analog optical front end
Additional information for end user	Analog electrical front end (e.g. for NTC or GSR)
Long operating time	 Hardware sequencer to offload processor Adjustable LED driver with current control
Works reliably with ambient light	Synchronous detector

Applications

The device is suitable for optical sensor platform.

Block Diagram

The functional blocks of this device are shown below:

Pin Assignments

Optical Module Pinout: This drawing is not to scale

Figure 3:

Optical Module Pinout (Top View) – AS7000-AA

Figure 4: Pin Description

Pin Number	Pin Name	Description
1	VD2	Supply voltage for LED D2 – connect unused current sinks to GND
2	VD4	Supply voltage for LED D4 – connect unused current sinks to GND
3	SIGREF	Analog reference output. Connect 2.2 μ F capacitor to GND (e.g. 0402 sized capacitor GRM153R60J225ME95 from Murata – needs to have >1 μ F specified for 1.0V voltage bias); do not load externally The typical operating voltage on this pin is 0.6V (sigref_en=1)
4	AGND	Analog ground. Connect to low noise GND
5	V_LDO	1.9V output voltage. Connect 2.2 μ F capacitor to GND (e.g. 0402 sized capacitor GRM153R60J225ME95 from Murata – needs to have >1 μ F with 1.0V voltage bias); do not load externally
6	GPIO6	General purpose input/output
7	GPIO7	General purpose input/output
8	GPIO8	General purpose input/output
9	VDD	Supply voltage.
10	GND	Power supply ground. All voltages are referenced to GND.

Pin Number	Pin Name	Description
11	GPIO0	General purpose input/output
12	GPIO1	General purpose input/output
13	GPIO2	General purpose input/output
14	GPIO3	General purpose input/output
15	GPIO4	General purpose input/output
16	GPIO5	General purpose input/output
17	VD1	Supply voltage for LED D1 – connect unused current sinks to GND
18	VD3	Supply voltage for LED D3 – connect unused current sinks to GND

Absolute Maximum Ratings

Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in Electrical Characteristics is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Figure 5: Absolute Maximum Ratings⁽¹⁾

Symbol	Parameter	Min	Max	Units	Comments			
		Electi	ical Parameters	5				
VDD	Supply voltage to ground		3.63V	V				
V_LDO	Supply voltage to ground		1.98V max. VDD+0.3V	V				
V _{IN}	Input pin voltage to ground, all pins except VD1/VD2/VD3/VD4		VDD+0.3V max. 3.8V	V				
V _{IN-VD1-4}	Input pin voltage to ground, pins VD1/VD2/VD3/VD4	-0.3	5.5	V				
V _{INLDO}	Input pin voltage to ground, pin SIGREF	-0.3	V_LDO+0.3V max. 1.98V	V				
I _{SCR}	Input current (latch-up immunity)	-100	100	mA	JEDEC JESD78			
	Electrostatic Discharge							
ESD _{HBM}	All pins except VD1/VD2/VD3 and VD4		±1.0	kV	Electrostatic discharge HBM: JEDEC JESD22-A114E			
	Pins VD1/VD2/VD3 and VD4		±350	V				

amu

Symbol	Parameter	Min	Мах	Units	Comments				
	Temperature Ranges and Storage Conditions								
T _{AMB}	Operating temperature	-30	70	°C					
T _{STRG}	Storage temperature range	-40	85	°C					
T _{BODY}	Package body temperature		260	°C	IPC/JEDEC J-STD-020 The reflow peak soldering temperature (body temperature) is specified according to IPC/JEDEC J-STD-020 "Moisture/Reflow Sensitivity Classification for Non-hermetic Solid State Surface Mount Devices."				
RH _{NC}	Relative humidity non-condensing	5	85	%					
MSL	Moisture sensitivity level		3		Maximum floor life time of 168h				

Note(s):

1. All optical customer designs shall be reviewed by **ams** before production.

Electrical Characteristics

VDD=2.6 to 3.6V, typ. values are at T_{AMB} =25°C (unless otherwise specified).

All limits are guaranteed. The parameters with min and max values are guaranteed with production tests or SQC (Statistical Quality Control) methods.

Figure 6: Operating Conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
VDD	Supply voltage		2.6	3.3	3.6	V
VLED	LED Supply voltage	VD1, VD2, VD3, VD4 if a LED is used			5.0	V
V _{LDO}	LDO voltage, generated by AS7000	Pin V_LDO		1.9		V
T _{AMB}	Operating free-air temperature		-30		70	°C
		CPU + EEPROM running at 16MHz; from 1.8V supply; all periphery blocks off		1.4		mA
		CPU in sleep mode, 16MHz oscillator running; all periphery blocks off		360		μΑ
		ADC 14bit; only during conversion		2		mA
		Photodiode amplifier and Optical front end		430		μΑ
IDD	Supply current	Electrical front end		180		μΑ
		LED current sink per channel 25mA range		210		μΑ
		LED current sink per channel 50mA and 100mA range		340		μΑ
		Deep sleep mode ^{(1), (2)} 512Hz oscillator running, LDO operating, processor powered		25		μΑ
		Power down ⁽³⁾ GPIO8=VDD.		0.8		μΑ
VOL	GPIO0-8 output low voltage	With 3 mA load With 6 mA load	0 0		0.4 0.8	V
VOH	GPIO0-8 output high voltage	With 6 mA load, VDD>3.0V	2.4		VDD	V

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
VIH	GPIO0-8 input high voltage		1.25			V
VIL	GPIO0-8 input low voltage				0.54	V
R _{PULLUP}	Pullup Resistor to VDD	On GPIO08 if bit gpioX_ pd=1 where X=08		75		kΩ
R _{PULLDOWN}	Pulldown Resistor to GND	On GPIO08 if bit gpioX_ pd=2 where X=08		75		kΩ
ILEAK1	GPIO0-8		-1		1	μΑ
ILEAK2	VD1-4 pins	At 5.0 V, T _{AMB} =25°C			2	μA
E_f16M	Tolerance of internal 16MHz oscillator	T _{AMB} >0°C	-2		+2	%
E_f3k2	Tolerance of internal 512Hz oscillator		-35		+25	%
		EEPROM				
n _{CYCLES}	Number of write cycles		100			cycles
t _{RETENTION}	Data retention time	At maximum 65°C			10	years
	I ² C Mode Timings (SCL / SDA Pr	ogrammable to GPIO Pins –	See I ² C	Mode)		
f _{SCLK}	SCL clock frequency		0		400	
t _{BUF}	Bus free time between a STOP and START condition		1.3			kHz
t _{HD:STA}	Hold time (repeated) START condition ⁽³⁾		0.6			μs
t _{LOW}	LOW period of SCL clock		1.3			μs
t _{HIGH}	HIGH period of SCL clock		0.6			μs
t _{SU:STA}	Setup time for a repeated START condition		0.6			μs
t _{HD:DAT}	Data hold time ⁽⁴⁾		0		0.9	μs
t _{SU:DAT}	Data Setup Time ⁽⁵⁾		100			ns
t _R	Rise time of both SDA and SCL signals		20		300	ns
t _F	Fall time of both SDA and SCL signals		20		300	ns
t _{SU:STO}	Setup time for STOP condition		0.6			μs
CB	Capacitive load for each bus Line	CB — total capacitance of one bus line in pF			400	pF

amu

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
C _{I/O}	I/O capacitance (SDA, SCL)				10	pF

Note(s):

- 1. Deep sleep mode. Use **ams** SDK (software development kit) to enter deep sleep, wakeup with low on GPIO8 pin (if gpio8_wakeup_ en=1) or high on GPIO7 (if gpio7_wakeup_en=1) or 512Hz oscillator sleep_timer.
- 2. GPIO0-8 configured to draw minimum current (software dependent).
- 3. Power down mode. Entered by setting enter_powerdown=1; No oscillator running. Wakeup with low on GPIO8 pin (always) or high on GPIO7 (if gpio7_wakeup_en=1).
- 4. A device must internally provide a hold time of at least 300ns for the SDA signal (referred to the V_{IHMIN} of the SCL signal) to bridge the undefined region of the falling edge of SCL.
- 5. A fast-mode device can be used in a standard-mode system, but the requirement $t_{SU:DAT}$ = to 250ns must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line $t_R max + t_{SU:DAT} = 1000 + 250 = 1250$ ns before the SCL line is released.

Figure 7: I²C Mode Timing Diagram

I²C Mode Timing Diagram: This figure shows the different timings required for I²C communication.

Note(s):

1. SCL / SDA Programmable to GPIO Pins – See l^2C Mode.

Detailed Description

Optical Analog Front End

Figure 8:

Optical Analog Front End – AS7000-AA Configuration

Note(s):

1. Dual Green LED Configuration is shown.

The number of LEDs inside the module depends on the application – Figure 8 shows 2 LEDs. If a LED is not populated, the current sink is connected directly to the pin (VD3 and VD4 in above figure).

LEDs

AS7000-AA Dual Green LED Configuration

Two green LEDs are used (pins VD1/VD2). The other two current sinks are available on pins VD3 and VD4.

LED Characteristics

Figure 9: LED Characteristics at T_{AMB} = 25°C

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	Green Ll	ED (AS7000-AA)				
	Allowed operating LED current	Continuous	0		50	mA
^I LED_GREEN	range ⁽¹⁾	1/10 duty cycle @ 1 kHz	U		100	mA
VF _{LED_GREEN}	Forward voltage ⁽²⁾	I _{LED} =20mA	2.9	3.2		V
VF _{LED+DRIVER}	Voltage on VD1/VD2 where operation of the LED and current	I _{LED} = 10mA			3.6	V
_GREEN	source is guaranteed	I _{LED} = 50mA			4.5	
λp_ _{GREEN}	Dominant wavelength			527		nm
$\Delta\lambda^{1/2}_{GREEN}$	Spectral halfwidth			35		nm

Note(s):

1. The maximum allowed LED current (DC and peak) is specified for 25°C. Lower values apply for higher temperatures.

2. Add 280mV and use LED current range ≤100mA for designing the VD1/VD2 LED supply (DC-DC converter).

Figure 10:

LED-Driver

The four LED-driver outputs can be controlled manually or by the built in sequencer. See Optical Front End Operating Modes

Note(s):

1. Dual Green LED Configuration.

Figure 11:

Operating Characteristics of Each LED Current Sink, VDD=3V, T_{AMB}=25°C (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	LED output current range	imax1/2/3/4 = 00 imax1/2/3/4 = 01 imax1/2/3/4 = 10	0 0 0		25 50 100	mA mA mA
I _{LED1/2/3/4}	I _{LED1/2/3/4} Tolerance	25mA range imax1/2/3/4 = 00	-5		5	
		50mA range imax1/2/3/4 = 01	-10		10	%
		100mA range ⁽¹⁾ imax1/2/3/4 = 10	-10		10	
V_Dmin	Output voltage compliance	Voltage compliance of current sinks D1,D2,D3,D4		0.28		V
V_Dmax	Output voltage maximum	Pins VD1, VD2, VD3 and VD4		5	5.5	V

Note(s):

1. Not production tested. Only guaranteed by lab characterization.

LED Configuration Registers

For ledX_supply_low registers see register AFE_PD_CFG.

Figure 12: AFE_LED_CFG

	0x00: AFE_LED_CFG						
Field	Name	Rst	Туре	Descr	iption		
18	sigref_en	0	RW	Signal reference: Is required for a 0Disable signal reference 1Enable signal reference	ll analog blocks		
11	led4_en	0	RW	0Disables LED4 output source. 1Enables LED4 output source.			
10	led3_en	0	RW	0Disables LED3 output source. 1Enables LED3 output source.			
9	led2_en	0	RW	0Disables LED2 output source. 1Enables LED2 output source.			
8	led1_en	0	RW	0Disables LED1 output source. 1Enables LED1 output source.			
				Defines IMAX of LED4.			
				Setting	ΙΜΑΧ		
7:6	imax4	1	RW	0	25mA		
7.0	iiiidx 4	I	L A A	1	50mA		
				2	100mA		
				3	Do not use		
5:4	imax3	1	RW	Defines IMAX of LED3. same encoding as imax4			
3:2	imax2	1	RW	Defines IMAX of LED2. same encoding as imax4			
1:0	imax1	1	RW	Defines IMAX of LED1. same enco	oding as imax4		

The LED_CFG register is used to configure the operating mode of the LED outputs.

AFE_LED_CURR Register (Addr: 0x04) The AFE_LED_CURR defines the LED output current.

Figure 13: AFE_LED_CURR Register

Add	lr: 0x04			AFE_LED_CURR
Bit	Bit Name	Default	Access	Description
31:24	curr4	0x00	R/W	LED4 output current – do not use code=0 (will generate no output current) ILED4 = (curr4 + 1) * imax4 / 256
23:16	curr3	0x00	R/W	LED3 output current – do not use code=0 (will generate no output current) ILED3 = (curr3 + 1) * imax3 / 256
15:8	curr2	0x00	R/W	LED2 output current – do not use code=0 (will generate no output current) ILED2 = (curr2 + 1) * imax2 / 256
7:0	curr1	0x00	R/W	LED1 output current – do not use code=0 (will generate no output current) ILED1 = (curr1 + 1) * imax1 / 256

Figure 14: AFE_MAN_SEQ_CFG

	0x20: AFE_MAN_SEQ_CFG									
Field	Name	Rst	Туре			Descri	iption			
26	man_mode	0	RW		0Enables Sequencer 1Enables Manual control of optical front end					
23	man_sw_itg	0	RW	0All inte	If man_mode=1 0All integrator capacitors are shorted. Integrator is reset 1Integrator capacitors are charging up. Integrator is running					
22	man_sw_led4	0	RW	lf man_mode=1 0LED output D4 disabled. (High impedance) 1LED output D4 enabled						
21	man_sw_led3	0	RW	lf man_mode=1 0LED output D3 disabled. (High impedance) 1LED output D3 enabled						
20	man_sw_led2	0	RW	lf man_mode=1 0LED output D2 disabled. (High impedance) 1LED output D2 enabled						
19	man_sw_led1	0	RW	If man_mode=1 0LED output D1 disabled. (High impedance) 1LED output D1 enabled						
18:17	diode_ctrl	0	RW	Connection of Photodiodes PD1, PD2, PD3, PD4 to the photodiode amplifier.0PD1-PD4 are connected1PD1 synchronous to LED1, PD2 sync/to LED2, PD3 sync/to LED3, PD4 sync/to LED42PD1 synchronous to LED1, PD2 sync/to LED1, PD3 sync/to LED2, PD4 sync/to LED23PD1 synchronous to LED1, PD2 sync/to LED1, PD3 sync/to LED4, PD4 sync/to LED4Note that AFE_PD_CFG.pdX takes precedence - to tur OFF one photo diode, the respective bit (pd1pd4) h be de-asserted in the AFE_PD_CFG register.AFE_PD_ CFG.pdXdiode_ ctrlPhoto Diode1Photo Diode3P D0xxOFFOFFOFF100ONONONON		D3 D3 U3 turn 4) has to Photo Diode4 OFF ON				
				1	01	LED1 LED1	LED2 LED1	LED3 LED2	LED4 LED2	
				1	10 11	LED1	LED1	LED2	LED2	

	0x20: AFE_MAN_SEQ_CFG									
Field	Name	Rst	Туре		Description					
13	dma_disable	0	RW	1ADC re	ADC DMA disable 1ADC result has to be read from adc_data 0ADC result(s) is/are written to memory					
				LED4 mod	le					
				Setting	Behavior					
				0	Always OFF					
				1	Always ON when sequencer is active					
12:10	led4_mode	0	RW	2	Controlled by sequencer					
				3	Controlled by sequencer, only ON in even iterations: 0, 2, 4 etc.					
				4	Controlled by sequencer, only ON in odd iterations: 1, 3, 5 etc.					
				5	Controlled by sequencer, only ON in every fourth iteration, starting at 3: 3, 7, 11 etc.					
				LED3 mod	le					
				Setting	Behavior					
		0		0	Always OFF					
				1	Always ON when sequencer is active					
9:7	led3_mode		RW	2	Controlled by sequencer					
	icus_moue			3	Controlled by sequencer, only ON in even iterations: 0, 2, 4 etc.					
				4	Controlled by sequencer, only ON in odd iterations: 1, 3, 5 etc.					
				5	Controlled by sequencer, only on in every fourth iteration, starting at 2: 2, 6, 10 etc.					

	0x20: AFE_MAN_SEQ_CFG								
Field	Name	Rst	Туре		Description				
				LED2 mode					
				Setting	Behavior				
				0	Always OFF				
				1	Always ON when sequencer is active				
6:4	led2_mode	0	RW	2	Controlled by sequencer				
				3	Controlled by sequencer, only ON in even iterations: 0, 2, 4 etc.				
				4	Controlled by sequencer, only ON in odd iterations: 1, 3, 5 etc.				
				5	Controlled by sequencer, only ON in every fourth iteration, starting at 1: 1, 5, 9 etc.				
				LED1 mode					
				Setting	Behavior				
				0	Always OFF				
				1	Always ON when sequencer is active				
3:1	led1_mode	0	RW	2	Controlled by sequencer				
				3	Controlled by sequencer, only ON in even iterations: 0, 2, 4 etc.				
				4	Controlled by sequencer, only ON in odd iterations: 1, 3, 5 etc.				
				5	Controlled by sequencer, only ON in every fourth iteration, starting at 0: 0, 4, 8 etc.				
0	seq_en	0	RW	0Disables sequencer 1Enables sequencer					

Photodiode Selection

In order to have flexible arrangement of the use photodiodes, PD1-PD4 can be individually connected to the photodiode amplifier input. The optional offset current allows cancellation of constant light sources like sunlight. In case of an external photodiode or any other sensor with (low) current output, the pins GPIO6 and GPIO7 can be used as input.

Additionally the sequencer can control the diodes – see diode_ ctrl described in register AFE_MAN_SEQ_CFG .

Figure 15: Photodiode Selection

AFE_PD_CFG Register (Addr: 0x08)

The AFE_PD_CFG register is used to configure the input to the photo amplifier.

Figure 16: AFE_PD_CFG Register

Ad	Addr: 0x08		AFE_PD_CFG					
Bit	Bit Name	Default	Access	Description				
25	sd_hld	0	R/W	SD hold 0Output of synchronous demodulator is forced to SIGREF if not set to +1 or -1 1 Output of synchronous demodulator is tristated if not set to +1 or -1				
23	led4_ supply_low	0	SC_WS ⁽¹⁾	If this bit is cleared, LED4 current sink voltage was below its compliance voltage				
22	led3_ supply_low	0	SC_WS ⁽¹⁾	If this bit is cleared, LED3 current sink voltage was below its compliance voltage.				
21	led2_ supply_low	0	SC_WS ⁽¹⁾	If this bit is cleared, LED2 current sink voltage was below its compliance voltage.				
20	led1_ supply_low	0	SC_WS ⁽¹⁾	If this bit is cleared, LED1 current sink voltage was below its compliance voltage.				
15:8	pdoffx	0x00	R/W	Input offset current Ioffset = pdoffx*10nA 00000000Offset source is turned OFF				
5	pd4	0	R/W	0Photodiode PD4 is disconnected from photo amplifier 1Photodiode PD4 is connected to photo amplifier (as defined in diode_ctrl)				
4	pd3	0	R/W	0Photodiode PD3 is disconnected from photo amplifier 1Photodiode PD3 is connected to photo amplifier (as defined in diode_ctrl)				
3	pd2	0	R/W	0Photodiode PD2 is disconnected from photo amplifier 1Photodiode PD2 is connected to photo amplifier (as defined in diode_ctrl)				
2	pd1	0	R/W	0 Photodiode PD1 is disconnected from photo amplifier 1 Photodiode PD1 is connected to photo amplifier (as defined in diode_ctrl)				
1	pdi_1	0	R/W	0GPIO7-input is disconnected from photo amplifier 1GPIO7-input is connected to photo amplifier				
0	pdi_0	0	R/W	0GPIO6-input is disconnected from photo amplifier 1GPIO6-input is connected to photo amplifier				

Note(s):

1. SC_WS: Self clear, write sets: These registers are reset by the hardware. Set to '1' before using them.

Photodiode Characteristics

Figure 17: Photodiode Arrangement

Note(s):

1. Orientation as in Figure 115 or Figure 3.

Figure 18:

AS7000-AA Photodiode Sensitivity (Solid Black) and LED Emission Spectrum (Dotted Green) – Dual Green LED Configuration

Note(s):

1. Perpendicular light source.

2. LEDs and Filters are shown for Dual Green LED Configuration.

Figure 19:

Operating Characteristics of Each Photodiode, VDD=3V, T_{AMB}=25°C (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Re	Irradiance responsivity	λ_p =525nm, 4 photodiodes used pd1/2/3/4=1, gain_g=4x, gain_en=1, pd_ampres=7M Ω dual green LED configuration filters		76		mV/ (µW /cm ²)
Id	Dark current	E _e =0	0		1	nA
los	Extrapolated offset current		-1		1	nA

Note(s):

1. For monochromatic light of 555nm, one lux corresponds to 0.146 $\mu\text{W}/\text{cm2}.$ That is, one obtains 6.5 lux per $\mu\text{W}/\text{cm2}$

Figure 20:

Photodiode Trans-Impedance Amplifier (TIA)

The photodiode amplifier can be configured in three different modes:

- Photocurrent to frequency converter
- Photocurrent to voltage converter
- Photocurrent integrator

Trans-Impedance-Amplifier (TIA)

The integration time $t_{\mbox{\scriptsize INT}}$ is defined either by the sequencer (man_mode=0) of manually through the bit sw_itg if man_mode=1.

amu

Figure 21: Settings for the Programming of the TIA

pd_ampres	pd12341	pd_ampcap	pd_ampcomp	pd_ampvo	Gain			
1	14	13	1	15	1V/μA			
2	14	7	1	15	2V/μA			
3	14	5	1	15	3V/μA			
4	12	2	0	15	5V/µA			
4	34	3	0		3ν/μΑ			
5	12	2	0	15	7V/μA			
	34	3	0		νν/μ Λ			
6	1	1	0	15	10V/µA			
0	24	2	0					
7	12	1	0	15	15V/µA			
	34	2	0		ιον/μΑ			
		Low Bandy	vidth Mode					
5	14	31	3	15	7V/μA			
	Integrating Mode (pd_ampres=0)							
0	14	10	3	15	1V/pQ			
0	14	20	3	15	1/2V/pQ			
0	14	30	3	15	1/3V/pQ			

Note(s):

1. pd1234 ... number of active photodiodes (for example, pd1=1, pd2=0, pd3=1, pd4=0 -> pd1234=2)

AFE_PD_AMPCFG Register (Addr: 0x0c)

The AFE_PD_AMPCFG register is used to configure the operating mode of the photo-amplifier

Figure 22: AFE_PD_AMPCFG Register

Addr: 0x0c		AFE_PD_AMPCFG			
Bit	Bit Name	Default	Access	Description	
31	pd_amp_en	0	R/W	0Activates power down mode of photo-amplifier 1Enables photo-amplifier	
13:10	pd_amp_vo	15	R/W	Opamp offset. Use ams device drivers – these automatically configure this register.	
9:8	pd_ ampcomp	3	R/W	Opamp compensation. Use ams device drivers – these automatically configure this register.	
7:5	pd_ampres	0x0	R/W	Feedback resistor 000No resistor in feedback of amplifier 0011MΩ 0102MΩ 0113MΩ 1005MΩ 1017MΩ 11010MΩ 11115MΩ	
4:0	pd_ampcap	0x0	R/W	Feedback capacitor – automatically set by ams device drivers for modes using pd_ampres not 000b. Capacitor = pd_ampcap*0.1pF	

For registers man_mode and man_sw_itg see AFE_MAN_SEQ_CFG .

Voltage Mode of the Photodiode Amplifier

The output voltage of the photodiode amplifier is depending on the feedback component:

(EQ1) Feedback resistor:
$$U_{out} = I_{photo} \cdot R_{fb}$$

(EQ2) Feedback capacitor:
$$U_{out} = I_{photo} \cdot \frac{t_{INT}}{C_{fb}}$$

Note(s): The integration time t_{INT} is defined either by the sequencer (man_mode=0) of manually through the bit sw_itg if man_mode=1.

For the synchronous demodulator only use the resistive feedback.

Figure 23: Difference Between Resistive and Capacitive Feedback

Optical Front End Operating Modes

Once the photodiode amplifier is configured the measurement can be done in two different ways. Either the LED-outputs, the photodiode amplifier and the ADC are controlled manually by means of register bits, or they are controlled by a built in sequencer.

Manual Operation of The Optical Frontend:

The optical front end can be manually controlled via the AFE_ MAN_SEQ_CFG register using man_mode=1.

Figure 24: Manual Operation of the Optical Frontend and LED

Note(s):

1. Applies only if man_mode=1.

For manual operation of the LEDs and its current sinks see LED-Driver.

Sequencer

In order to synchronize the LED-currents, the integration time and the ADC-sampling time, a built in sampling Sequencers can be used. The sequencer generates the 16 bit-timings based on a 1µs clock. The results of the analog to digital conversion are automatically stored in a pipeline buffer or in register adc_data.

The timings can be programmed with following registers (apply for man_mode=0):

Figure 25: Sequencer Control Registers Overview

Register	Description
seq_div	Divider of the 1µs input clock
seq_count	Number of measurements in one sequence
seq_start	Writing 1 starts the sequencer, 0 stops the sequencer
seq_period	Time of one measurement cycle
seq_led_start	Start time of the LED drivers within one cycle
seq_led_stop	Stop time of the LED drivers within one cycle
seq_itg_start	Start time of the integrator
seq_itg_stop	Stop time of the integrator
seq_sdp_start	Start time of the synchronous demodulator's positive multiplication
seq_sdp_stop	Stop time of the synchronous demodulator's positive multiplication
seq_sdm1_start	Start time of the synchronous demodulator's negative multiplication 1
seq_sdm1_stop	Stop time of the synchronous demodulator's negative multiplication 1
seq_sdm2_start	Start time of the synchronous demodulator's negative multiplication 2
seq_sdm2_stop	Stop time of the synchronous demodulator's negative multiplication 2
seq_adc, seq_adc_fract	Sampling position of the ADC in single steps / in 1/16th steps
seq_adc_inc, seq_adc_inc_fract	Increment of the sampling position of the ADC after each measurement in single steps / in 1/16th steps
sd_subs	Subsampling ratio between sequencer frequency and ADC sampling frequency – use for adjusting the ADC sampling frequency at a lower speed than the sequencer cycle frequency

Note(s):

1. The lowest data value of all registers except seq_count, seq_div, seq_adc_inc, seq_adc_inc_fract and seq_adc_fract is 1.

Figure 26: Block Diagram of Sequencer

Sequencer Registers

For registers man_mode, man_sw_sdmult, man_sw_sdpol, man_sw_itg, man_sw_led4, man_sw_led3, man_sw_led2, man_sw_led1, diode_ctrl, dma_disable, led4_mode, led3_ mode, led2_mode and led1_mode,seq_en see AFE_MAN_SEQ_CFG.

For register sd_subs see AFE_SC_CFG .

AFE_SEQ_DIV_CNT Register (Addr: 0x24)

The AFE_SEQ_DIV_CNT register sets the input divider for the main clock.

Figure 27: AFE_SEQ_DIV_CNT Register

Addr: 0x24		AFE_SEQ_DIV_CNT			
Bit	Bit Name	Default Access		Description	
23:8	seq_div	0x0000	R/W	Divider value; Sequencer time increment $t_{clk} = (seq_div + 1) * 1\mu s$	
7:0	seq_count	0x00	R/W	Number of measurements in one sequence. IF seq_count = 0x00 the sequencer is running continuously.	

AFE_SEQ_START Register (Addr: 0x28)

In AFE_SEQ_START register the configured sequencer can be started.

Figure 28: AFE_SEQ_START Register

Addr: 0x28		AFE_SEQ_START		
Bit	Bit Name	Default Access		Description
0	seq_start	0	R/W	1Starts the sequencer. Sequencer is running according to the configurations in the sequencer registers Writing 0 stops the sequencer(s). In manual mode, writing 1 starts one ADC conversion. Reading returns 1 if the sequencer is running (sequencer mode), respectively if the ADC is converting (manual mode) and it returns to 0 once the ADC has finished its conversion

AFE_SEQ_PER Register (Addr: 0x2C)

The AFE_SEQ_PER register sets one measurement cycle of the sequencer.

Figure 29: AFE_SEQ_PER Register

Addr: 0x2C		AFE_SEQ_PER			
Bit	Bit Name	Default	Access	Description	
15:0	seq_period	0x0000	R/W	Sequencer period	
15.0	Jeq_pendu	0,0000	10,00	T = seq_period * seq_div * 1μs	

AFE_SEQ_LED Register (Addr: 0x30)

The AFE_SEQ_LED register sets the LED drive timing. Data is stored as 16-bit value

Figure 30: AFE_SEQ_LED Register

Addr: 0x30		AFE_SEQ_LED			
Bit	Bit Name	Default	Access	Description	
31:16	seq_led_start	0x0000	R/W	LED start time; the LED starts one cycle later to allow the analog biasing to settle before the current is enabled.	
15:0	seq_led_stop	0x0000	R/W	LED stop time	

AFE_SEQ_ITG Register (Addr: 0x34)

The AFE_SEQ_ITG register sets the photoamplifier integration time if using capacitive feedback respectively removes the short of the resistive feedback. Data is stored as 16-bit value

Figure 31: AFE_SEQ_ITG Register

Ad	dr: 0x34			AFE_SEQ_ITG				
Bit	Bit Name	Default	Access	Description				
31:16	seq_itg_start	0x0001	R/W	Integrator start time (start time=1 and stop time=0 means that it's - by default - always ON) Turning OFF the integrator actually means discharge the capacitor for capacitive integration mode, without the synchronous demodulator.				
15:0	seq_itg_stop	0x0000	R/W	Integrator stop time				

AFE_SEQ_SDP Register (Addr: 0x38)

The AFE_SEQ_SDP register sets the synchronous demodulator positive multiplication time. Data is stored as 16-bit value

Figure 32: AFE_SEQ_SDP Register

Ac	ldr: 0x38			AFE_SEQ_SDP
Bit	Bit Name	Default	Access	Description
31:16	seq_sdp_start	0x0000	R/W	Positive multiplication start time
15:0	seq_sdp_stop	0x0000	R/W	Positive multiplication stop time

AFE_SEQ_SDM1 Register (Addr: 0x3C)

The AFE_SEQ_SDM1 register sets the synchronous demodulator negative multiplication time 1. Data is stored as 16-bit value

Figure 33: AFE_SEQ_SDM1 Register

Ad	ldr: 0x3C		AFE_SEQ_SDM1					
Bit	Bit Name	Default	Access	Description				
31:16	seq_sdm1_start	0x0000	R/W	Negative multiplication start time 1				
15:0	seq_sdm1_stop	0x0000	R/W	Negative multiplication stop time 1				

AFE_SEQ_SDM2 Register (Addr: 0x40)

The AFE_SEQ_SDM2 register sets the synchronous demodulator negative multiplication time 2. Data is stored as 16-bit value

Figure 34: AFE_SEQ_SDM2 Register

Ac	ldr: 0x40			AFE_SEQ_SDM2
Bit	Bit Name	Default	Access	Description
31:16	seq_sdm2_start	0x0000	R/W	Negative multiplication start time 2
15:0	seq_sdm2_stop	0x0000	R/W	Negative multiplication stop time 2

AFE_SEQ_ADC Register (Addr: 0x44)

The AFE_SEQ_ADC register defines the time when the ADC starts sampling during each measurement cycle. The fraction setting permits a definition of the sampling point as a 1/16 fraction of a sequencer cycle. If seq_div=0 (1us sequencer clock), then one unit is equivalent to 62.5ns. If, e.g. seq_div=4 (5us) then the resolution of the fract register is 62.5ns*5=312.5ns

Figure 35: AFE_SEQ_ADC Register

	Addr: 0x44	AFE_SEQ_ADC						
Bit	Bit Name	Default	Access	Description				
31:28	seq_adc_inc_fract	0x0	R/W	ADC delay increment : seq_adc_inc_fract/16 fractional				
27:24	seq_adc_fract	0x0	R/W	ADC start delay: seq_adc_fract/16 fractional				
23:16	seq_adc_inc	0x00	R/W	ADC increment to the adc sample time after each conversion.				
15:0	seq_adc	0x0000	R/W	ADC Sampling time; changes of this register have no effect as long as the sequencer is running (seq_ en=1).				

AFE_SEQ_COUNTER Register (Addr: 0x80)

The AFE_SEQ_COUNTER register shows the counter value of the sequence counter and period counter

Figure 36: AFE_SEQ_COUNTER Register

A	ddr: 0x80		AFE_SEQ_COUNTER					
Bit	Bit Name	Default Access		Description				
31:24	subs_counter	0x00 R		Current subsampling counter value				
23:16	sequence_counter	0x00	R	Current sequence counter value				
15:0	cycle_counter	0x0000	R	Current cycle counter value				

AFE_ADC_COUNTER Register (Addr: 0x84)

The AFE_ADC_COUNTER register shows the current value of the ADC counter

Figure 37: AFE_ADC_COUNTER Register

Ado	lr: 0x84			AFE_ADC_COUNTER				
Bit	Bit Name	Default	Default Access Description					
7:0	adc_counter	0x00	R	Current ADC counter value				

Example Sequencer Configurations

Used adc_clock = 0 and adc_highres=0 for the examples to shorten the ADC settling time. As seq_div = 1 and seq_ period=40, one sequence is $80\mu s$.

Example 1

Making 4 measurements with LED1 only.

Integration time is 20 cycles. LED is turned on 10 cycles before integration starts to avoid current bouncing errors.

Figure 38: Sequencer Example 1

seq_ period	seq_ div	seq_ count	seq_ led_ start	seq_ led_ stop	seq_ itg_ start	seq_ itg_ stop	seq_ adc	seq_ adc_inc	led1_ mode	led2_ mode
40	1	4	10	40	20	40	39	0	2	0

Figure 39:

Sequencer Example 1 Waveform

Example 2

Making 4 measurements with LED2 only.

Integration time is 20 cycles. LED is turned ON 10 cycles before integration starts to avoid current bouncing errors.

Figure 40: Sequencer Example 2

seq_ period	seq_ div	seq_ count	seq_ led_ start	seq_ led_ stop	seq_ itg_ start	seq_ itg_ stop	seq_ adc	seq_ adc_inc	led1_ mode	led2_ mode
40	1	4	10	40	20	40	39	0	0	2

Figure 41: Sequencer Example 2 Waveform

Example 3

Making 4 measurements, switching between LED1 and LED2. Integration time is 20 cycles. LED is turned ON 10 cycles before integration starts to avoid current bouncing errors.

Figure 42: Sequencer Example 3

seq_ period	seq_ div	seq_ count	seq_ led_ start	seq_ led_ stop	seq_ itg_ start	seq_ itg_ stop	seq_ adc	seq_ adc_inc	led1_ mode	led2_ mode
40	1	4	10	40	20	40	39	0	3	4

Figure 43: Sequencer Example 3 Waveform

Example 4

Making 4 measurements, switching LED1 and LED2 simultaneously.

Integration time is 20 cycles. LED is turned ON 10 cycles before integration starts to avoid current bouncing errors.

Figure 44: Sequencer Example 4

seq_ period	seq_ div	seq_ count	seq_ led_ start	seq_ led_ stop	seq_ itg_ start	seq_ itg_ stop	seq_ adc	seq_ adc_inc	led1_ mode	led2_ mode
40	1	4	10	40	20	40	39	0	2	2

Figure 45:

Sequencer Example 4 Waveform

Example 5

Making 4 measurements with LED1 only and subsampling.

Integration time is 20 cycles. LED is turned ON 10 cycles before integration starts to avoid current bouncing errors. ADC sampling starts 5 cycles delayed every measurement.

Figure 46: Sequencer Example 5

	eq_ riod	seq_ div	seq_ count	seq_ led_ start	seq_ led_ stop	seq_ itg_ start	seq_ itg_ stop	seq_ adc	seq_ adc_inc	led1_ mode	led2_ mode
4	40	1	4	10	40	20	40	25	4	2	0

Figure 47:

Sequencer Example 5 Waveform

Example 6

Making 4 measurements with LED1 only and subsampling.

Integration time is 20 cycles. LED is turned OFF 10 cycles before integration starts to measure fluorescent response of a sensor. ADC sampling starts 5 cycles delayed every measurement.

Figure 48: Sequencer Example 6

seq_ period	seq_ div	seq_ count	seq_ led_ start	seq_ led_ stop	seq_ itg_ start	seq_ itg_ stop	seq_ adc	seq_ adc_inc	led1_ mode	led2_ mode
40	1	4	10	19	20	40	25	4	2	0

Figure 49:

Sequencer Example 6 Waveform

Example 7

Making 8 measurements with LED1 only. Reduced cycle time to $40 \mu s.$

Integration time is 5 cycles. LED is turned ON 5 cycles before integration starts to avoid current bouncing errors.

Figure 50: Sequencer Example 7

seq_ period	seq_ div	seq_ count	seq_ led_ start	seq_ led_ stop	seq_ itg_ start	seq_ itg_ stop	seq_ adc	seq_ adc_inc	led1_ mode	led2_ mode
20	1	8	10	20	15	20	19	0	2	0

Figure 51:

Sequencer Example 7 Waveform

Optical Signal Conditioning

Synchronous Demodulator

An optional synchronous demodulator can be used to detect small optical signals in the presence of large unwanted noise (ambient light). Since the detector synchronizes to the LED frequency, the demodulator can only be used of the measurement sequencer is running.

It includes input filer (high pass at 200Hz, adjustable low pass) and an 2nd order adjustable output low pass. The demodulator itself multiplies the signal by +1/0/-1 with a timing which is controlled by the sequencer.

Note(s): The optical signal conditioning stage need sigref_ en=1 for operation.

High Pass Filter

An optional high pass filter can be used to remove unwanted DC-components from the signal and allows further amplification. In order to guarantee fast settling times of the filter, four cutoff frequencies can be chosen.

Gain Stage

An optional gain stage can be used to amplify the signal after the DC-component has been removed.

Optical Signal Conditioning Registers

Register bit sigref_en see register AFE_LED_CFG.

Figu	re 5	3:
AFE	_SC	CFG

0x70: AFE_SC_CFG									
Field	Name	Rst	Туре	Descrip	otion				
26	sd_pol_init	0	RW	The low level driver shall ensure that this register is 0 if one of the seq_sdm pulses is first, and is 1 if the seq_sdp is first within a sequence.					
				Anti-aliasing filter cut-off frequency					
				Setting	Signal				
25:24	aa_freq	0	RW	0	10kHz				
23.24	uu_neq	Ŭ		1	20kHz				
				2	40kHz				
				3	60kHz				
20:13	sd_subs	0	RW	Synchronous demodulator subsampling ratio between sequencer frequency and ADC sampling frequency. ADC-Fsample = Sequencyer_Frequency/(sd_subs+1) When setting to 0, then in every sequencer iteration the ADC will run. When setting to 1, then the first sequencer iteration will not trigger the ADC, but the second one will. Setting to N will make N iterations without ADC, followed by one iteration with the ADC measurement executed. It is recommended to use the ADC interrupt in this case and not the sequencer interrupt.					
				Synchronous demodulator low	pass filter.				
				Setting	Frequency				
12:11	sd_bw	0	RW	0	10Hz				
				1	20Hz				
				2	40Hz				
				3	80Hz				
10	hp_en	0	RW	0Power down of the high pass filter 1Enable high pass filter					
9	hp_byp	0	RW	0HP filter is used 1HP filter is bypassed					

	0x70: AFE_SC_CFG									
Field	Name	Rst	Туре	Descrip	otion					
				High pass filter cutoff frequency						
				Setting	Cutoff frequency					
8:7	hp_freq	0	RW	0	0.33Hz					
				1	1.32Hz					
				2	5.28Hz					
				3	10.56Hz					
6	sd_en	0	RW	0Power down of the synchron 1Enable synchronous demode						
5	sd_byp	0	RW	0Synchronous demodulator is used 1Synchronous demodulator is bypassed						
4	gain_en	0	RW	0Power down of the Gain stage 1Enable Gain stage						
3	gain_byp	0	RW	0Gain stage is used 1Gain stage is bypassed						
				Gain						
				Setting	Gain					
				0	1					
				1	2					
2:0	gain_g	0	RW	2	4					
2.0	3478			3	8					
				4	16					
				5	32					
				6 64						
				7	don't use					

Sync Demodulator Example

LED1 and LED2 should be modulated with 2kHz

Demodulated signal should be sampled with 20Hz for 1 second. Calculation of sequencer values:

- 1. Modulation Frequency = 2kHz. Period = 500us.
- 2. Set sequencer period to 250us. -> seq_div=0, seq_period=500
- Operation of LEDs between 0us and 100us (depends on LED and Amp-settings)
 -> seq_led_start=1, seq_led_stop=100
- Operation of photo-amplifier and synchronous demodulator multipl. by +1 between 50us and 100us -> seq_sdp_start=50, seq_sdp_stop=100
- Operation of photo-amplifier and synchronous demodulator multipl. by -1 between 300us and 350us -> seq_sdm1_start=300, seq_sdm1_stop=350
- Sampling position at 495us + settling -> seq_adc=490
- ADC should only sample at 20Hz (50ms). This means sampling at every 50ms/500us = 100th sequencer run. sd_subs=100
- ADC values should be stored for 1 second. This means 1s/50ms = 20 samples must be stored.
 ->seq_count=20

Figure 54:

Sync Demodulator Example Detail

Figure 55: Sync Demodulator Example

am

Electrical Analog Front End

The electrical analog front end consists of three identical signal paths with independent settings of bias condition, gain and offset.

Figure 56: Electrical Analog Front End Internal Circuit

Note(s):

1. Resistor / T-gates resistance values are given as indication - do not rely on absolute values

Input Pins

Five general purpose pins can be used either as configurable GPIO for the processor or as analog input pins for the electrical analog front end. The analog inputs can be configured to setup different amplifier topologies.

AFE Registers

Figure 57: AFE_LED_CFG

	0x00: AFE_LED_CFG									
Field	Name	Rst	Туре	Description						
18	sigref_en	0	RW	Signal reference: Is required for all analog blocks 0Disable signal reference 1Enable signal reference						

Figure 58: AFE_EAF

	0x90: AFE_EAF									
Field	Name	Rst	Туре		Description					
25	sigref_on_dac_ buf	0	RW	If asserted, con	If asserted, connect SIGREF to DAC buffer.					
24	measure_dac	0	RW	If this bit is asserted, the DAC output is connected to the gain stage input (independent of gpio_gst_in selection, therefore the DAC output is measureable on the GPIO pin)						
				DAC on GPIO						
				Setting	Meaning					
				0	No DAC biasing					
18:16	gpio_dac		RW	1	DAC on GPIO4					
10.10	gpio_uac	0	ΓVV	2	DAC on GPIO5					
				3	DAC on GPIO6					
				4	DAC on GPIO1					
				5	DAC on GPIO0					

	0x90: AFE_EAF									
Field	Name	Rst	Туре		Description					
				Resistive biasing						
				Setting	Meaning					
				0	No resistive biasing					
15:13	gpio_r_bias	0	RW	1	Resistive biasing on GPIO4					
15.15	gpio_i_bids	Ŭ		2	Resistive biasing on GPIO5					
				3	Resistive biasing on GPIO6					
				4	Resistive biasing on GPIO1					
				5	Resistive biasing on GPIO0					
	gpio_i_bias	0	RW	Current biasing						
				Setting	Meaning					
				0	No current biasing					
12:10				1	Current biasing on GPIO4					
12.10				2	Current biasing on GPIO5					
				3	Current biasing on GPIO6					
				4	Current biasing on GPIO1					
				5	Current biasing on GPIO0					
				Current setting	of gpio current bias					
				Setting	Current					
9:8	gpio_bias_	0	RW	0	OFF					
2.0	current		ΓVV	1	10μΑ					
				2	100µA					
				3	1mA					

0x90: AFE_EAF									
Field	Name	Rst	Туре		Description				
				Gain stage inpu	ut selection				
				Setting	Meaning				
				0	Not connected				
7:5	gpio_gst_in	0	RW	1	GPIO4				
7.5	gpio_gst_m	0	1.00	2	GPIO5				
				3	GPIO6				
				4	GPIO1				
				5	GPIO0				
	gst_ref			Gain stage reference voltage					
		0	RW	Setting	Meaning				
4:3				0	AGND				
1.5				1	DAC buffer				
				2	SIGREF				
				3	Reserved – do not use				
				Gain stage gain					
				Setting	Meaning				
				0	1				
				1	2				
2:0	gst_gain	0	RW	2	4				
	<u> </u>	-		3	8				
				4	16				
				5	32				
				6	64				
				7	Reserved – do not use				

The AFE_EAF register is used to configure the electrical frontend

Figure 59: AFE_EAF_DAC

	0x94: AFE_EAF_DAC									
Field	Name	Rst	Туре	Description						
9:0	dac_value	0	RW	DAC value (10 bit) 0x000 0V 0x1FF 1.9V						

The AFE_EAF_DAC register is used to configure the dac value

Possible Configurations of Every Amplifier Stage

Figure 60:

Non Inverting Amplifier With Offset and Input Voltage Divider (Temperature Sensor)

Figure 61:

Non Inverting Amplifier With Current Source and Offset (Temperature Sensor)

Figure 62:

Non Inverting Amplifier With Current Source and Reference Path (Temperature Sensor)

Figure 63: Non Inverting Amplifier High Impedance, GND Referenced

Figure 64: Non Inverting Amplifier With DC-Blocking, Referenced to V_ADCRef/2

Figure 65:

Non Inverting Amplifier With DC-Blocking and Fast Settling Time, Referenced to ADCRef /2

ADC

The ADC is a 14bit successive-approximation register (SAR) type. It supports 12 bit with very fast conversion time up to 1Msps and 14bit with moderate conversion time up to 250ksps.

The ADC is started by the sequencer and its timing or in manual mode (man_mode=1) by setting seq_start=1 (seq_start stays '1' as long as the conversion runs). The AS7000 can be configured to trigger an interrupt upon end of conversion.

Figure 66: ADC Internal Circuit and Multiplexer

For best accuracy the ADC needs to recalibrate itself – use **ams** SDK to initiate the calibration procedure.

Figure 67:

Operating Characteristics of the ADC, VDD=3V, T_{AMB}=25°C (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
Vref	Reference voltage V_ADCRef			1.6		V
TCvref	Reference voltage temperature coefficient			±50		ppm/°C
	Resolution	adc_clock ≤ 1MHz Otherwise	14 12			Bit
INL	Relative accuracy		-8		8	LSB
DNL	Differential nonlinearity			±2		LSB
	Offset error			±8		LSB
	Gain error			±8		LSB
SNR	Signal-to-noise ratio	Fsample = 1kHz, Fsignal=100Hz		80		dB
THD	Total harmonic distortion	Fsample = 1kHz, Fsignal=100Hz		-70		dB
Tconv	Conversion rate	12 bit resolution	1			μs
Vin	Input voltage range		0		Vref	V

Figure 68:

ADC Output Codes (12 Bit Resolution Setting Range)

ADC Output Codes:

For 14 bit resolution the output data range is 0 to 16383, one LSB represents Vref/16384.

ADC Registers

Figure 69: AFE_ADC_DATA

	0x88: AFE_ADC_DATA							
Field	Name	Rst	Туре	Description				
13:0	adc_data	0	RO	Current ADC output signals				

The ADC_DATA register shows the current raw output of the ADC.

Figure 70: AFE_ADC_CFG

	0xa4: AFE_ADC_CFG							
Field	Name	Rst	Туре	Description				
21	adc_selfpd	1	RW	 1Power down ADC when not converting; use this to conserve power, but set adc_settling_time to minimum 64µs to permit settling of the ADC reference buffer. 0 Always enabled ADC 				
20	adc_discharge	1	RW	0Suppress ADC capacitor discharging 1Discharge ADC capacitor before tracking If asserted, the capacitor is discharged before the tracking phase. If zero, the discharge phase is suppressed and the tracking phase is started one cycle earlier.				

	0xa4: AFE_ADC_CFG									
Field	Name	Rst	Туре			Descripti	on			
				defines th window i If the gain byp=0), s	ne number s kept oper n stage in th et this to m	o not use in in of ADC clock a additionally ne optical fror inimum 8µs. ad set adc_dis	cycles the sar to its 4 ADC o ntend is used If adc_selfpd=	npling :lock cycles. (gain_		
				Setting	Periods	μs (@4MHz)	μs (@2MHz)	μs (@1MHz)		
				0	0	0	0	0		
				1	4	1	2	4		
				2	8	2	4	8		
			RW	3	16	4	8	16		
19:17	adc_settling_ time	5		4	32	8	16	32		
				5	64	16	32	64		
				6	128	32	64	128		
				7	256	64	128	256		
					d directly t		nd adc_selfpd=0 and the TIA is the ADC using following minimum			
				pd_a	mpres	minimu	m adc_settli	ng_time		
				11	NΩ		1µs			
				2MΩ	-7ΜΩ		2µs			
					10MΩ	-15MΩ		3µs		

	0xa4: AFE_ADC_CFG									
Field	Name	Rst	Туре			Description	on			
				Note that 500kHz w	values oth	er than 4MHz e resulting tin	is freely configurable. , 2MHz, 1MHz and ning very confusing for			
				Setting	Periods	ns	kHz			
				0	2	125	8000			
				1	4	250	4000			
				2	6	375	2666			
				3	8	500	2000			
				4	10	625	1600			
		_	RW	5	12	750	1333			
15:12	15:12 adc_clock	7		6	14	875	1142			
				7	16	1000	1000			
				8	18	1125	888			
				9	20	1250	800			
				10	22	1375	727			
				11	24	1500	666			
				12	26	1625	615			
				13	28	1750	571			
				14	30	1875	533			
				15	32	2000	500			
11	adc_calibration	0	RW	an ADC "o (man_mo let the CP	conversion" ode=1) by a OU sleep and	has to be sta sserting seq_s	must be asserted, and rted in manual mode start. It is suggested to ADC interrupt. Also, a			
10	adc_interleave	0	RW	Interleave	e mode					
9	adc_en	0	RW	0Reset ADC 1Enable ADC Warning: In reset state the ADC clears its calibration data. Re-calibration is necessary next time it is enabled again.						

	0xa4: AFE_ADC_CFG							
Field	Name	Rst	Туре	Description				
8:6	adc_sel	0	RW	 Optical frontend Electrical front e Do not use Do not use 				
		1	RW	ADC resolution depe	ending on the Sampling speed			
4	adc_highres			Setting	Selection			
				0	12 bit			
				1	14 bit			
				Defines number of sa (adc_multimode =1)	amples that are taken in multimode			
				Setting	Sample Period			
				0	2			
				1	4			
3:1	adc_multi_n	0	RW	2	8			
				3	16			
				4	32			
				5	48			
				6	64			
				7	96			

	0xa4: AFE_ADC_CFG								
Field	Name	Rst	Туре	Description					
0	adc_multimode	0	RW	 0If ADC is started one sample is measured 1If ADC is started multiple samples are measured with "adc_multi_fs" interval and stored to memory by the DMA controller. The number of samples is defined with adc_multi_n. In interleaved mode, the sampling time is 4x higher than in non-interleave mode. In non-interleave mode, if adc_multimode=0, only 1 sample is taken. In interleave mode, if adc_multimode=0, then ADC conversions are executed until the end of the sequencer period. If adc_multimode=1, then adc_multi_n is always taken into account. 					

Power Management and Operating Modes

After the supply (VDD) is asserted the AS7000 automatically starts up. It is up to the application software into which operating mode the AS7000 is changed (e.g. to power down mode).

The AS7000 can operate in following modes:

Figure 71: AS7000 Operating Modes

Mode	Internal LDO (V_ LDO)	512Hz Oscillator	16MHz Oscillator	CPU	Wake Up CPU to Active Mode By	Entered By
Active	~	~	\checkmark	Running	-	-
Sleep mode	√	~	~	ldle	Any interrupt (any timer, GPIO)	WFI() command of CPU
Deep sleep mode	V	~	×	× = reset; registers keep content	512Hz sleep_counter, GPIO7 ⁽¹⁾ and GPIO8 ⁽²⁾	Use ams SDK for entering deep sleep
Power down	×	×	×	× = reset; registers are reset	GPIO7 ⁽¹⁾ and GPIO8 ⁽³⁾	enter_ powerdown= 1

Note(s):

1. Wakeup by GPIO7=high if gpio7_wakeup_en=1; applies for power down and deep sleep mode.

2. Wakeup by GPIO8=low if gpio8_wakeup_en=1.

3. In power down mode the AS7000 will always wakeup if GPIO8=low independent of previous setting of gpio8_wakeup_en.

For operation of the sequencer the 16MHz oscillator is required, therefore the sequencer only operates in active or wait for interrupt mode.

Clock Control Unit (CCU) for Peripheral Blocks

All peripheral block have a reset bit and a clock enable bit. The purpose of these register bits is to disable clock to them when they are not used and therefore reduce power consumption.

Note(s): Access to the register is not possible if the clock to the peripheral is disabled or reset is asserted.

e.g. to access any register of AFE (like optical analog front end) set the register bits afe_resetn=1 and afe_enable=1.

Wake-Up From Power Down Mode

Figure 72: Wake-Up Logic From Power Down Mode

Power Management And Operating Modes Registers

In order to operate the different blocks inside the AS7000, the block has to be enabled (e.g. gpio_enable=1) and the reset de-asserted (e.g. gpio_resetn=1).

Figure 73: CCU_DEVICEID

	0x00: CCU_DEVICEID							
Field	Name	Rst	Туре	Description				
31:16	device_id	0	RO	Reads back 0x1b58 (decimal 7000) ("AS7000")				
3:0	revision	0	RO	Reads back the silicon revision				

Figure 74: CCU_GPIO

	0x20: CCU_GPIO							
Field	Name	Rst	Туре	Description				
0	gpio_resetn	0	RW	0=reset 1=running				
1	gpio_enable	0	RW	0=clock OFF 1=clock ON				

Figure 75: CCU_I2CM

	0x2c: CCU_I2CM								
Field	Name	Rst	Туре	Description					
0	i2cm_resetn	0	RW	0=reset 1=running					
1	i2cm_enable	0	RW	0=clock OFF 1=clock ON					

Figure 76: CCU_I2CS

	0x30: CCU_I2CS							
Field	Name	Rst	Туре	Description				
0	i2cs_resetn	0	RW	0=reset 1=running				
1	i2cs_enable	0	RW	0=clock OFF 1=clock ON				

Figure 77: CCU_UART

	0x34: CCU_UART								
Field	Name	Rst	Туре	Description					
0	uart_resetn	0	RW	0=reset 1=running					
1	uart_enable	0	RW	0=clock OFF 1=clock ON					

Figure 78: CCU_TMR

	0x38: CCU_TMR						
Field	Field Name Rst Type Description						
0 tmr_resetn 0 RW 0=reset 1=running		0=reset 1=running					
1	1 tmr_enable 0 RW 0=clock OFF 1=clock ON						

Figure 79: CCU_AFE

0x3c: CCU_AFE						
Field	Field Name Rst Type Description					
0	afe_resetn 0 RW		RW	0=reset 1=running		
1	1 afe_enable 0 RW 0=clock OFF 1=clock ON					

Figure 80: CCU_WD_CTRL

	0x40: CCU_WD_CTRL						
Field Name Rst Type Description							
0	wd_en	0	RW	Enable watchdog timer			
1	wd_irq_msk	0	RW	If 1, pass wd_irq to system NMI input			
2	wd_reset_msk	0	RW	If 1, then reset system in case of wd_reset			

Figure 81: CCU_WD_STATUS

0x44: CCU_WD_STATUS						
Field Name Rst Type Description						
0	wd_irq	0	SS_WC	Watchdog timer has reached interrupt level		
1	wd_reset	0	SS_WC	Watchdog has reached zero		
2	wd_irq_intr	0	RO	NMI is currently asserted by watchdog		

Figure 82: CCU_WD_VAL

	0x48: CCU_WD_VAL						
Field	Field Name Rst Type Description						
23:0	wd_value	0	R_PUSH	Reload the watchdog counter with this value. The watchdog counter counts down, and it triggers a system reset as soon as it reaches zero.			

Figure 83: CCU_WD_IRQVAL

0x4c: CCU_WD_IRQVAL						
Field	Field Name Rst Type Description					
23:0	wd_irq_value	0	RW	If the watchdog counter reached this value, it will trigger an NMI as an early warning, if wd_irq_msk is set.		

Figure 84: CCU_LP_CFG

	0x60: CCU_LP_CFG							
Field	ield Name Rst Type Description		Description					
15:0	sleep_counter	0	RW	When going into low power sleep, this the sleep counter start value in slow clock ticks. As soon as it reaches zero, the CPU will wake up (if the register was written with a non zero value)				
16	gpio7_wakeup_ en	0	RW	If asserted, setting GPIO7 to high can wake up the chip as well (from both sleep and powerdown)				
17	gpio8_wakeup_ en	0	RW	If asserted, setting GPIO8 to low can wake up the chip from deep sleep (GPIO8=low always wakes up from powerdown)				

The CCU_LP registers controls the low power modes

Figure 85: CCU_LP_CTRL

	0x64: CCU_LP_CTRL						
Field Name Rst Type Description							
0	enter_sleep	0	W	Writing a 1 here makes the system enter deep sleep mode (wakeup by counter reaching zero) ⁽¹⁾			
1	enter_ powerdown	0	W	Writing a 1 here makes the system enter power down mode (wakeup by GPIO)			

Note(s):

1. Only use **ams** SDK to enter deep sleep mode, do not set bit directly.

MCU

The MCU is a 32-bit ARM Cortex-M0-based RISC processor with 32kB of EEPROM memory and 4kB of RAM data memory. Details of the core processor can be found under infocenter.arm.com.

The MCU offers the following features:

- System:
 - ARM Cortex M0 processor with single cycle 32 bit multiplication instruction
 - System tick timer
 - Hardware protection to disable the read or read/write of the internal EEPROM and SRAM
 - Unique ID for every device delivered
- Memory:
 - 32kByte EEPROM memory
 - 4kByte RAM
- Peripherals:
 - 9 general-purpose (GPIO) pins with configurable output structure
 - UART
 - I²C Master
 - I²C Slave
 - 14 bit ADC
 - Watchdog timer
 - 2 general purpose 16 bit timer
- Clock:
 - Internal 16MHz RC oscillator
 - Internal 512Hz watchdog oscillator and timer
- Debug:
 - Serial wire Debug
- Power control:
 - Reduced power modes Sleep, Stop
 - Power ON reset

Figure 86: CPU Internal Block Diagram

ams delivers a SDK (Software Development Kit) for easy access of the internal digital and analog blocks. The SDK includes detailed documentation of the hardware (like I²C, UART) and includes low level drivers.

For accessing of the peripheral registers, a base address needs to added. The base address depends on the block used (see also **ams** provided SDK – software development kit).

Base Address	Function
0x4000000	CCU: Chip control unit
0x40010000	GPIO
0x40040000	I2CM: I2C Master
0x40050000	I2CS: I2C Slave
0x40060000	UART
0x40070000	Timers
0x40080000	AFE: Analog frontend controller

Debug – SWD

Note(s):

1. Press debug button on power-up (VDD ON).

During power up of the AS7000 the device checks if the pin SIGREF is shorted to GND (e.g. by a resistance of 10Ω) – see Figure 87. If this condition is detected and the security bit is not set, a monitor mode is entered.

In this monitor mode the AS7000 waits 5s where a debugger can be connected. If the 10s expires without a debugger connected, the AS7000 continues startup.

If a debugger is connected, the debugger can control AS7000 as required.

Note(s): If the security bit is set inside the EEPROM the debugger is bypassed even if SIGREF is shorted to GND upon startup.

GPIO Pins and Output Switch Matrix

A flexible output switch matrix allows dynamic assignment of the internal digital blocks to the GPIO pins:

Figure 89: Selector Assignments

Interface	GPIO	I ² C Master	I ² C Slave	UART	Analog
gpioX_func; X=08	000	011	100	101	111
GPIO0	I/O	M_SDA	S_SDA	TxD	Ana0
GPIO1	I/O	M_SCL	S_SCL	RxD	Ana1
GPIO2	I/O	M_SDA	S_SDA	TxD	Ana2
GPIO3	I/O	M_SCL	S_SCL	RxD	Ana3
GPIO4	I/O	M_SDA	S_SDA	TxD	Ana4
GPIO5	I/O	M_SCL	S_SCL	RxD	Ana5
GPIO6	I/O	M_SDA	S_SDA	TxD	Ana6
GPIO7	I/O	M_SCL	S_SCL	RxD	Ana7
GPIO8	I/O	M_SDA	S_SDA	TxD	Ana8

Each of the GPIO pins is capable of adding a pullup and/or pulldown:

Figure 90: GPIO Internal Circuit

I²C Mode

The AS7000 includes an I²C master and slave (independent) hardware block. The pins name SDA and SCL in this section can be mapped during runtime to the GPIO pins according to Figure 89. **ams** SDK operates the I²C slave on GPIO2 (=SDA) and GPIO3 (=SCL) and uses a default I²C address of 0x30 (7-bit format; R/W bit has to be added) respectively 60h (8-bit format for writing) and 61h (8-bit format for reading). It expects external pullup resistors.

I²C Serial Control Interface

I²C Feature List:

Fast mode (400kHz) and standard mode (100kHz) support

7+1-bit addressing mode

Write formats: Single-Byte-Write, Page-Write

Read formats: Current-Address-Read, Random-Read, Sequential-Read

SDA input delay and SCL spike filtering by integrated RC-components

I²C Protocol

Figure 91: I²C Symbol Definition

Symbol	Definition	RW	Note
S	Start condition after stop	R	1 bit
Sr	Repeated start	R	1 bit
DW	Device address for write	R	0110 0000b (60h)
DR	Device address for read	R	0110 0001b (61h)
WA	Word address	R	8 bit
А	Acknowledge	W	1 bit
N	No Acknowledge	R	1 bit
reg_data	Register data/write	R	8 bit
data (n)	Register data/read	W	8 bit
Р	Stop condition	R	1 bit
WA++	Increment word address internally	R	During acknowledge

I²C Symbol Definition: Shows the symbols used in the following mode descriptions.

I²C Write Access

Byte Write and Page Write formats are used to write data to the slave.

I²C Byte Write: Shows the format of an I²C byte write access.

Figure 93: I²C Page Write

I²C Page Write: Shows the format of an I²C page write access.

The transmission begins with the START condition, which is generated by the master when the bus is in IDLE state (the bus is free). The device-write address is followed by the word address. After the word address any number of data bytes can be sent to the slave. The word address is incremented internally, in order to write subsequent data bytes on subsequent address locations.

For reading data from the slave device, the master has to change the transfer direction. This can be done either with a repeated START condition followed by the device-read address, or simply with a new transmission START followed by the device-read address, when the bus is in IDLE state. The device-read address is always followed by the 1st register byte transmitted from the slave. In Read Mode any number of subsequent register bytes can be read from the slave. The word address is incremented internally.

I²C Read Access

Random, Sequential and Current Address Read are used to read data from the slave.

I²C Random Read: Shows the format of an I²C random read access.

Random Read and Sequential Read are combined formats. The repeated START condition is used to change the direction after the data transfer from the master.

The word address transfer is initiated with a START condition issued by the master while the bus is idle. The START condition is followed by the device-write address and the word address.

In order to change the data direction a repeated START condition is issued on the 1st SCL pulse after the acknowledge bit of the word address transfer. After the reception of the device-read address, the slave becomes the transmitter. In this state the slave transmits register data located by the previous received word address vector. The master responds to the data byte with a not-acknowledge, and issues a STOP condition on the bus.

Figure 95: I²C Sequential Read

I²C Sequential Read: Shows the format of an I²C sequential read access.

Sequential Read is the extended form of Random Read, as more than one register-data bytes are transferred subsequently. In difference to the Random Read, for a sequential read the transferred register-data bytes are responded by an acknowledge from the master. The number of data bytes transferred in one sequence is unlimited (consider the behavior of the word-address counter). To terminate the transmission the master has to send a not-acknowledge following the last data byte and generate the STOP condition subsequently.

Figure 96: I²C Current Address Read

I²C Current Address Read: Shows the format of an I²C current address read access.

To keep the access time as small as possible, this format allows a read access without the word address transfer in advance to the data transfer. The bus is idle and the master issues a START condition followed by the Device-Read address. Analogous to Random Read, a single byte transfer is terminated with a not-acknowledge after the 1st register byte. Analogous to Sequential Read an unlimited number of data bytes can be transferred, where the data bytes has to be responded with an acknowledge from the master. For termination of the transmission the master sends a not-acknowledge following the last data byte and a subsequent STOP condition.

GPIO, SWD and Security Registers

Figure 97: GPIO_DATA

	0x00: GPIO_DATA					
Field	Name	Rst	Туре	Description		
12:0	gpio_d	0	R_PUSH	Read/write pin data directly. A read always returns the value at the pin. ⁽¹⁾		

Note(s):

1. The upper 4 bits are routed to the LED pins. This way the software can output data conveniently and quickly. The AFE module has to be turned ON and the LED have to be enabled for this to work.

Figure 98: GPIO_OE

	0x04: GPIO_OE					
Field	Name	Rst	Туре	Description		
8:0	gpio_oe	0	R_PUSH	Output enable (1=output 0=input)		

Figure 99: GPIO_WMASK

	0x08: GPIO_WMASK					
Field	Name	Rst	Туре	Description		
8:0	gpio_wmask	0x1ff	RW	All subsequent writes to GPIO_DATA and GPIO_OE will affect only those bits that are asserted in this mask register. This way a driver can set and clear bits with one access without affecting any other bits. This can be used for bit banging implementations of serial protocols.		

Figure 100: GPIO_INTTYPE

	0x10: GPIO_INTTYPE					
Field	Name	Rst	Туре	Description		
8:0	gpio_inttype	0	RW	Interrupt type (0=level 1=edge sensitive). Level sensitive interrupts are asserted as long the interrupt condition is true. Edge level interrupt have to be cleared explicitly.		

Figure 101: GPIO_INTPOL

	0x14: GPIO_INTPOL					
Field	Name	Rst	Туре	Description		
8:0	gpio_intpol	0	RW	Interrupt polarity (0=interrupt when '0' / nedgedge, 1=when '1' / posedge)		

Figure 102: GPIO_STATUS

	0x20: GPIO_STATUS					
Field	Name	Rst	Туре	Description		
8:0	gpio_status	0	R_PUSH	Interrupt condition fulfilled (edge interrupt has to be cleared by writing a '1' here)		

Figure 103: GPIO_INTMASK

	0x24: GPIO_INTMASK						
Field	Name	Rst	Туре	Description			
8:0	gpio_intmsk	0	RW	Interrupt mask: a '1' enables the interrupt			

Figure 104: GPIO_INTR

	0x28: GPIO_INTR					
Field	Name	Rst	Туре	Description		
8:0	gpio_intr	0	RO	These bits are OR'ed together and generate the interrupt signal		

Figure 105: GPIO_D_SET

	0x30: GPIO_D_SET					
Field	Name	Rst	Туре	Description		
12:0	gpio_o_set	0	PUSH	Setting one or more bit(s) of the GPIO_DATA register directly without affecting the others		

Figure 106: GPIO_OE_SET

	0x34: GPIO_OE_SET					
Field	Name	Rst	Туре	Description		
12:0	gpio_oe_set	0	PUSH	Setting one or more bit(s) of the GPIO_OE registers directly without affecting the others		

Figure 107: GPIO_D_CLR

	0x38: GPIO_D_CLR					
Field	Name	Rst	Туре	Description		
12:0	gpio_o_clr	0	PUSH	Clearing one or more bit(s) of the GPIO_DATA register directly without affecting the others		

Figure 108: GPIO_OE_CLR

	0x3c: GPIO_OE_CLR					
Field	Name	Rst	Туре	Description		
12:0	gpio_oe_clr	0	PUSH	Clearing one or more bit(s) of the GPIO_OE registers directly without affecting the others		

Figure 109: CCU_IOFUNC0

	0x50: CCU_IOFUNC0					
Field	Name	Rst	Туре	Description		
2:0	gpio0_func	0	RW	Please refer to Figure 110		
4:3	gpio0_pd	0	RW	Please refer to Figure 111		
5	gpio0_sr	0	RW	Slew rate: 0=fast 1=slow		
10:8	gpio1_func	0	RW	Please refer to Figure 110		
12:11	gpio1_pd	0	RW	Please refer to Figure 111		
13	gpio1_sr	0	RW	Slew rate: 0=fast 1=slow		
18:16	gpio2_func	0	RW	Please refer to Figure 110		
20:19	gpio2_pd	0	RW	Please refer to Figure 111		
21	gpio2_sr	0	RW	Slew rate: 0=fast 1=slow		
26:24	gpio3_func	0	RW	Please refer to Figure 110		
28:27	gpio3_pd	0	RW	Please refer to Figure 111		
29	gpio3_sr	0	RW	Slew rate: 0=fast 1=slow		

am

The CCU_IOFUNC0/1/2 gpioX_func register defines the multiplexing mode of each pin.

Figure 110: gpioX_func Codings (X=0...8)

gpioX_func	Description
0	GPIO
3	I ² C Master
4	l ² C Slave
5	UART
7	Analog

The CCU_IOFUNC0/1/2 gpioX_pd fields define the pullup/pulldown configuration

Figure 111: gpioX_pd Codings (X=0...8)

gpioX_pd	Description
0	None
1	Weak Pull Up
2	Weak Pull Down
3	Keeper

Figure 112: CCU_IOFUNC1

	0x54: CCU_IOFUNC1					
Field	Name	Rst	Туре	Description		
2:0	gpio4_func	0	RW	Please refer to Figure 110		
4:3	gpio4_pd	0	RW	Please refer to Figure 111		
5	gpio4_sr	0	RW	Slew rate: 0=fast 1=slow		
10:8	gpio5_func	0	RW	Please refer to Figure 110		
12:11	gpio5_pd	0	RW	Please refer to Figure 111		
13	gpio5_sr	0	RW	Slew rate: 0=fast 1=slow		
18:16	gpio6_func	0	RW	Please refer to Figure 110		
20:19	gpio6_pd	0	RW	Please refer to Figure 111		
21	gpio6_sr	0	RW	Slew rate: 0=fast 1=slow		
26:24	gpio7_func	0	RW	Please refer to Figure 110		
28:27	gpio7_pd	0	RW	Please refer to Figure 111		
29	gpio7_sr	0	RW	Slew rate: 0=fast 1=slow		

Figure 113: CCU_IOFUNC2

	0x58: CCU_IOFUNC2						
Field	Field Name Rst Type Description						
2:0	gpio8_func	0	RW	RW Please refer to Figure 110			
4:3	gpio8_pd	0	RW	RW Please refer to Figure 111			
5	gpio8_sr	0	RW	Slew rate: 0=fast 1=slow			

Figure 114: CCU_RETENTION

	0xfc: CCU_RETENTION						
Field Name Rst Type Description							
30	enable_swd	1	RW	Enable SWD interface on GPIO7/8 (overrides any gpio7_ func/gpio8_func setting).			
31	securitybit	0	WS_SC	securitybit, to disable access through the SWD interface in the final product. The bit can only be written to 1, not reset. If enabled by the factory or in EEPROM, the bootloader sets this bit before booting the user software. Therefore the image inside the EEPROM is protected against external access.			

The CCU_RETENTION register is the only register that is not affected by powerdown, Only a power cycle will reset these bits.

Application Information

The AS7000 has a built-in I²C master and host device. Therefore it allows to connect an accelerometer used for motion artefact compensation in two ways:

- 1. Connected through the host and data provided by the host to the AS7000 via the AS7000 I²C slave
- 2. Connected directly to the AS7000 and the AS7000 I²C master retrieves the data from the accelerometer.

Following two figures show the different configurations.

Figure 115: Measurement System With Motion Artefact Compensation

Note(s):

1. Accelerometer data provided by host.

In above configuration the host needs to send the accelerometer data to the AS7000 via the I²C interface.

Figure 116:

Measurement System With Motion Artefact Compensation Using AS7000 Dedicated Accelerometer

Note(s):

1. Accelerometer connected directly

In above configuration, the AS7000 I²C master is used to poll the data from the accelerometer.

The AS7000 has internal protection diodes on all GPIO pins connected to VDD. If VDD is switched off, all GPIO pins are clamped to this VDD supply plus one diode voltage (typically 0.6V). Therefore connect the periphery supply of these pins (example: I²C pins from host in above example connected to GPIO2/3), which are connected to the AS7000 GPIO pins to the same VDD supply as the AS7000. If this is not possible, ensure that these pins are at logic 0 if the VDD supply of AS7000 is switched off.

Due to the integration of the optical diode / optical frontend / analog processing / ADC and microprocessor a heart-rate measurement application can be built with very small PCB area as shown in following figure:

Figure 117: Typical Form Factor Including

Typical Form Factor Including VDD LDO

External Components

Figure 118: External Components

Part Number	Parameter or Type	Voltage Rating	Size	Comment	Manufacturer	
AS1383	DC-DC converter 200mA, 3.5MHz	n/a	1.17x0.77x0.6mm	DC-DC converter for VLED supply on pin VD1/VD2	ams www.ams.com	
AS1369-BWLT-30	200mA LDO	VOUT=3.0V	0.97x0.97x0.6mm	Ultra Small LDO for VDD supply	www.ans.com	
GRM153R60J225ME95	C=2.2μF, min. 1μF at 1.0V bias	6.3V	0402 (1.0x0.5x0.5mm)	On pin VDD, V_LDO and SIGREF	Murata www.murata.com	
LIS2DH12	Accelerometer	n/a	2x2x1mm		ST www.st.com	

Package Drawings & Markings

Figure 119: Package Drawings

Note(s):

1. XXXXX - Tracecode backside marking (upside down)

Ordering & Contact Information

Figure 120: Ordering Information

Ordering Code	Туре	LED Configuration	Marking	Delivery Form	Delivery Quantity
AS7000-AA	AS7000	Green/Green	XXXXX ⁽¹⁾	Tape & Reel	5000 pcs/reel
AS7000-AAM	AS7000	Green/Green	XXXXX ⁽¹⁾	Tape & Reel	500 pcs/reel

Note(s):

1. XXXXX - Tracecode backside marking

Buy our products or get free samples online at: www.ams.com/ICdirect

Technical Support is available at: www.ams.com/Technical-Support

Provide feedback about this document at: www.ams.com/Document-Feedback

For further information and requests, e-mail us at: ams_sales@ams.com

For sales offices, distributors and representatives, please visit: www.ams.com/contact

Headquarters

ams AG Tobelbader Strasse 30 8141 Premstaetten Austria, Europe

Tel: +43 (0) 3136 500 0 Website: www.ams.com

RoHS Compliant & ams Green Statement

RoHS: The term RoHS compliant means that ams AG products fully comply with current RoHS directives. Our semiconductor products do not contain any chemicals for all 6 substance categories, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, RoHS compliant products are suitable for use in specified lead-free processes.

ams Green (RoHS compliant and no Sb/Br): ams Green defines that in addition to RoHS compliance, our products are free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material).

Important Information: The information provided in this statement represents ams AG knowledge and belief as of the date that it is provided. ams AG bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. ams AG has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. ams AG and ams AG suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

Copyrights & Disclaimer

Copyright ams AG, Tobelbader Strasse 30, 8141 Premstaetten, Austria-Europe. Trademarks Registered. All rights reserved. The material herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner.

Devices sold by ams AG are covered by the warranty and patent indemnification provisions appearing in its General Terms of Trade. ams AG makes no warranty, express, statutory, implied, or by description regarding the information set forth herein. ams AG reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with ams AG for current information. This product is intended for use in commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing by ams AG for each application. This product is provided by ams AG "AS IS" and any express or implied warranties, including, but not limited to the implied warranties of merchantability and fitness for a particular purpose are disclaimed.

ams AG shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interruption of business or indirect, special, incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of ams AG rendering of technical or other services.

Document Status

Document Status	Product Status	Definition
Product Preview	Pre-Development	Information in this datasheet is based on product ideas in the planning phase of development. All specifications are design goals without any warranty and are subject to change without notice
Preliminary Datasheet	Pre-Production	Information in this datasheet is based on products in the design, validation or qualification phase of development. The performance and parameters shown in this document are preliminary without any warranty and are subject to change without notice
Datasheet	Production	Information in this datasheet is based on products in ramp-up to full production or full production which conform to specifications in accordance with the terms of ams AG standard warranty as given in the General Terms of Trade
Datasheet (discontinued)	Discontinued	Information in this datasheet is based on products which conform to specifications in accordance with the terms of ams AG standard warranty as given in the General Terms of Trade, but these products have been superseded and should not be used for new designs

Revision Information

Changes from 1-10 (2017-Feb-28) to current revision 1-12 (2018-Feb-26)	Page			
1-10 (2017-Feb-28) to 1-11 (2017-Sep-28)				
Added note under Absolute Maximum Ratings figure	5			
1-11 (2017-Sep-28) to 1-12 (2018-Feb-26)				
Removed AS7000AB related content				

Note(s):

1. Page and figure numbers for the previous version may differ from page and figure numbers in the current revision.

2. Correction of typographical errors is not explicitly mentioned.

Content Guide

- 1 General Description
- 1 Key Benefits and Features
- 1 Applications
- 2 Block Diagram
- 3 Pin Assignments
- 5 Absolute Maximum Ratings
- 7 Electrical Characteristics

10 Detailed Description

- 10 Optical Analog Front End
- 11 LEDs
- 12 LED-Driver
- 18 Photodiode Selection
- 20 Photodiode Characteristics
- 22 Photodiode Trans-Impedance Amplifier (TIA)
- 25 Voltage Mode of the Photodiode Amplifier

26 Optical Front End Operating Modes

- 26 Manual Operation of The Optical Frontend:
- 27 Sequencer
- 29 Sequencer Registers
- 33 Example Sequencer Configurations

40 Optical Signal Conditioning

- 40 Synchronous Demodulator
- 40 High Pass Filter
- 40 Gain Stage
- 41 Optical Signal Conditioning Registers
- 43 Sync Demodulator Example

46 Electrical Analog Front End

- 46 Input Pins
- 47 AFE Registers
- 51 Possible Configurations of Every Amplifier Stage
- 54 ADC
- 56 ADC Registers

61 Power Management and Operating Modes

- 62 Clock Control Unit (CCU) for Peripheral Blocks
- 62 Wake-Up From Power Down Mode
- 63 Power Management And Operating Modes Registers
- 67 MCU
- 69 Debug SWD
- 70 GPIO Pins and Output Switch Matrix
- 72 I²C Mode
- 76 GPIO, SWD and Security Registers

83 Application Information

- 85 External Components
- 86 Package Drawings & Markings
- 87 Ordering & Contact Information
- 88 RoHS Compliant & ams Green Statement
- 89 Copyrights & Disclaimer
- 90 Document Status
- 91 Revision Information