ALL SENSORS.

www.allsensors.com 408.225.4314 info@allsensors.com

EK-01 Evaluation Kit User Guide

Contents

I.	Package	e contents:	1		
II.	Introduct	tion:	1		
III.	Installati	on:	2		
II	I.A. Softwa	are:	2		
II	I.B. Hardw	vare:	2		
II	I.C. Initial	configuration:	3		
II	I.D. Digital	l Sensors	4		
	III.D.1.	Data Logging	5		
	III.D.2.	Changing the I2C Address	7		
	III.D.3.	Additional Data Acquisition Options	7		
IV.	Appendix	x A: Windows OS Environment	8		
V.	Appendix B: Part and Adapter table10				
VII.	Appendix	x C: Schematics	11		
VII.	Appendix	x D: Summary	15		

I. Package contents:

- 1ea EK-01 PCB Assembly
- 1ea DIG-01 Adapter Board for DLV /DLVR Series preinstalled on EK-01 PCB Assembly
- 1ea DIG-08 Adapter Board for DLH /DLHR/DLLR Series
- 1ea USB cable Micro-B to Standard-A
- 1ea USB memory drive (includes: Evaluation Software, User guide & Product Catalog)
- 1ea Pressure Tubing
- N/A Pressure Sensor (Sold separately)

II. Introduction:

The EK-01 Evaluation Kit provides a convenient means of connecting various digital output All Sensors products for testing and evaluation. The accompanying Windows based Evaluation software provides direct display of live readings and the ability to save data continuously to a CSV file.

III. Installation:

III.A. Software:

Windows Versions 7 and later include all necessary operating system components by default, so no further preparation is required.

If you are using Windows XP or Vista, verify that your system has .NET 2 support installed: See Appendix A.

Copy the Evaluation application from the included USB memory drive to the Desktop folder (or other convenient location).

Ne	w folder			• 🔳 🔞
Â	Name	Date modified	Туре	Size
	퉬 NET2	2015-05-26 16:15	File folder	
	🛕 ASCEval.exe	2015-05-22 12:52	Application	368 KB
	🐴 DevEval.csv	2015-05-21 11:33	Microsoft Office E	19 KB
	💼 schema.ini	2015-01-07 12:07	Configuration sett	1 KB

Figure 1

No installer is needed for the application: just run the *ASCEval.exe* file (Figure 1).

III.B. Hardware:

Using the USB cable provided, or any Micro-B to Standard-A cable, connect the board to a powered on PC. The EK-01 will be identified as a generic USB Input Device, and Windows will install its standard class drivers. These are included in Windows, so there is no need for further driver installation. Note that it may take several minutes for Windows to extract necessary files from its DriverStore archive.

Figure 2

Verify that both the green 'Power' LED and the amber 'USB' LED are illuminated (Figure 2). If not, unplug cable and connect to a different port on the PC.

III.C. Initial configuration:

Start the **ASCEval.exe** application. The Eval Board does not need to be connected (Figure 3).

In the 'DEVICE TYPE' section, select the 'Product Family' and 'Device' matching the sensor you are testing (Figure 3).

Not Connected DEVICE TYPE Product Family (Select Family) Device	Pressure Units Y SPECIFIED PRESSURE Minimum Maximum	Device Units C Counts C Pct Range At Counts At Counts	C 3.3 V C 5 V SENSOR INTERFACE C Sync Read C Timed Read Change To 40	DEVICE TYPE Product Family DLVR Device DLVR-1100 Use Adapter DIG-01
---	---	---	--	--

The appropriate Device Adapter will then be listed in the 'Device' selection (Figure 4):

Install the appropriate Device Adapter onto the Eval Board: keep the adapter parallel to the PCB and push both ends down evenly (Figure 5).

Each device adapter will support multiple product families. Check the adapter instructions in *Appendix B* for information on tubing connections to the pressure ports of the sensor.

III.D. Digital Sensors

Install the pressure sensor in the ZIF socket as shown in Figure 6.

Refer to Appendix B1 or the product datasheet for pressure tube connection to the pressure port.

Start the **ASCEval.exe** application. Connect the Evaluation Board to a PC USB port; verify that the 'Power' and 'USB' LEDs go on. The 'USB STATUS' in the top-left corner of the application window should report 'Connected'.

Select the 'Product Family' and 'Device' for the installed sensor. For DLV and DLVR sensors select the supply voltage option of your device.

Click the 'Turn On' button to switch on power to the sensor (Figure 7).

USB STATUS Connected	OUTPUT SCALE Pressure Units	Device Units	C 3.3 V Tum On
DEVICE TYPE	InH2O -	Counts C Pct Range	@ 5 V
Product Family			SENSOR INTERFACE
DLVR	SPECIFIED PRESSURE		Constant Company
Device	Minimum -10 InH20 /	At 1638 Counts	C Timed Read
DEVICETOD	Maximum 10 usto	A LATE Countr	

At this time, you can select the Sample Interval and the number of samples averaged before reporting (Figure 8). The method of averaging is a simple arithmetic mean of each set of N samples, so the reading will update every N sample intervals.

USB STATUS Connected	OUTPUT SCALE Pressure Units Device	Units SENSOR POWER
DEVICE TYPE	InH20 - Cour C Pd R	nts R 5 V Tum Off
Product Family		SENSOR INTERFACE
OLVR -	SPECIFIED PRESSURE	C See Best C See Earth
Device	Minimum -10 InH20 At 16	35 Counts @ Timed Read
DLVR-L10D -		Device has I2C adddress: 40
Use Adapter DIG-01	Maximum 10 InH20 At 147	45 Counts Change To 40 -

Click 'Start Reading' to display continuously updated values (Figure 9). Click 'Stop Reading' then 'Turn Off' before removing sensor from socket.

Figure 9

If at any point the program appears to become unresponsive to button actions, simply disconnect and reconnect the USB cable.

III.D.1. Data Logging

While the Eval Board hardware and software can receive data at up to 2000 points per second, the program display is limited to an update interval of about 200ms. Each received data reading (or calculated average of readings) can be saved to a comma-separated values (CSV format) file at the full data rate.

For lower speed applications, data can be continuously saved for days at a time.

Once a filename is defined (by clicking 'Set Log Filename'), the 'Save Data' button is enabled.

Data can be saved continuously or until a fixed number of points have been acquired, as determined by the 'Points to Save' control (Figure 10).

EK-01 User Guide

		D	0	D	r	
	A	B		U	E	F
1	> Starting capture:	2015-05-27 11:	31:07			
2	P Units: InH2O; T Units	: deg C; Average	e of 1 points			
3	Status: 0 = No Error	2 = Stale data	3 = Fault			
4	Sample interval: 20 ms	ec	_	-		-
5	Time (s)	Sample #	Pressure	Temperature	Points in Report	Status
6	3.0441741	1	-0.02976	21.7	1	0
7	3.0511745	2	-0.02976	21.7	1	0
8	3.0661753	3	-0.02976	21.7	1	0
9	3.0861765	4	-0.02976	21.7	1	0
10	3.1061776	5	0.00229	21.7	1	0
11	3.1261788	6	-0.01602	21.7	1	0
12	3.1461799	7	-0.01602	21.7	1	0
13	3.1661811	8	-0.02518	21.7	1	0
14	3.1861822	9	-0.02518	21.7	1	0
15	3.2061834	10	-0.01602	21.7	1	0
16	3.2261845	11	-0.02518	21.7	1	0
17	3.2461856	12	-0.02518	21.7	1	0
18	3.2661868	13	-0.02518	21.7	1	0
19	3.2861879	14	-0.00229	21.7	1	0
20	3.3061891	15	-0.02976	21.7	1	0
21	3.3261902	16	-0.02976	21.7	1	0
22	3.3461914	17	-0.02976	21.7	1	0
23	3.3661925	18	-0.02976	21.7	1	0
			Figure 11			

The CSV file format is shown above (Figure 11).

The timestamp of reception of the USB data packet is shown, as well as number of points in the packet (Report). Data is saved in the units and averaging selected for display in the program.

If available, Temperature data is recorded as well. For each iteration of 'Save Data' using the same filename, readings are appended to the end of the file.

III.D.2. Changing the I2C Address

For I2C - Interface versions of these parts, the I2C address can be changed from the factory default value:

After device power-on, adjust the address and then click 'Change To' (Figure 12).

After clicking OK to the confirmation dialog and the completion dialog (Figures 13, 14), the device will be off, with address changed. The sensor may be removed at this time.

If you are adjusting multiple parts, this sequence allows a rapid cycle of each unit through the process.

III.D.3. Additional Data Acquisition Options

All DLV/DLVR parts can be read in a timed polling loop, as performed by the SENSOR INTERFACE 'Timed Read' selection (the program default for all devices). Devices ordered with the SPI interface option are limited to this method only, as shown in Figure 15 below.

USB STATUS Connected	Pressure Units	Device Units	C 33V
DEVICE TYPE	PSI 🔄	Counts C PctRange	esv
Product Family			SENSOR INTERFACE
DLV -	SPECIFIED PRESSURE		
Device	10.000		C Sync Read C Steep Fast Rea
DLV-015A *	Minimum I v PSI	At 1638 Counts	* Timed Read
Use Adapter DIG-01	Maximum 15 PSI	At 14745 Counts	Change To 40

The devices with the *I2C interface* in *DIP or J-Lead* packages, which include the INT pin, can *also* support one of two additional communication methods synchronous to updates in the sensor output.

III.D.3.a) Parts <u>without</u> the Sleep Mode option

The 'Sync Read' interface selection, shown in Figure 16, will cause the time interval controls to be disabled. All readings are transferred from the sensor as soon as the INT pin indicates new data is available. This option eliminates 'stale data' values that may occur when polling faster than the sensor update rate.

EK-01 User Guide

All Sensors Evaluation Kit	100	_	
USB STATUS Connected DEVICE TYPE Product Family DLVR Device DLVR-L10D Use Adapter DIG-01	OUTPUT SCALE Pressure Units InH20 SPECIFIED PRESSURE Minimum -10 Maximum 10 In	Device Units C Counts C Pct Range nH20 At 1638 Counts nH20 At 14745 Counts	SENSOR POWER C 3.3 V C 5 V Tum Off SENSOR INTERFACE C Sync Read C Timed Read Device has I2C adddress: 40 Change To 40 😒
Start Reading Samp	e Interval 🚺 📩 min	0 ÷ sec 20 ÷ msec	Sample Average 10 🕂
	Fig	gure 16	

III.D.3.b) Parts with the Sleep Mode option

A 'Sleep Fast Read' method is also available (Figure 17).

This selection provides the fastest possible data updates. The INT pin triggers a data read as soon as a new value is available. Immediately following, the *Wake Pressure* command is sent, which allows near-zero sleep time for the sensor. This command skips the internal ADC auto-zero and temperature measurement phases executed in all other interface modes, and *only* performs sensor bridge measurement.

When the 'Timed Read' Sensor Interface option is selected for Sleep Mode parts, the *Wake All* command is used instead, which *does* include internal ADC auto-zero and temperature measurement on each reading.

-USB STATUS	OUTPUT SCALE	Dovice Unite	SENSOR POWER
	InH20	C Pct Range	© 5 V Turn Off
Product Family DLVR	SPECIFIED PRESSURE		SENSOR INTERFACE
Device DLVR-L10D	Minimum -10 InH2	20 At 1638 Counts	C Timed Read
Use Adapter DIG-01	Maximum 10 InH2	20 At 14745 Counts	Change To 40 +

See device datasheets for further information.

IV. Appendix A: Windows OS Environment

A particular Windows XP or Windows Vista system may not have the .NET 2.0 framework installed, depending on previous software and Windows Update installations. To check this:

In the application NET2 folder, run **CheckNET2.exe** (Figure 18).

← → AllSensors → NET2	▼ 4 ₇	Search NET2	<u>م</u>
Organize 🔻 Include in library 👻 Share	with 🔻 🛛 Burn	New folder	= • 1 0
Name	Date modified	Туре	Size
 CheckNET2.exe 	2014-08-26 9:58	Application	119 KB
WetFx20SP2_x86.exe	2014-06-30 16:18	Application	24,416 KB
WindowsInstaller-KB893803-v2-x86.exe	2014-08-25 15:10	Application	2,526 KB

If a dialog appears as shown below (Figure 19), no further action is needed.

If the .NET 2.0 framework was *not* found, run the Microsoft Update file **NetFx20SP2_x86.exe**.

This will install the Microsoft- provided .NET 2.0 framework on your system.

When complete, verify success of the installation by repeating the **CheckNET2.exe** test.

In rare cases, the .NET installation will fail with a message indicating that the Windows Installer component also needs updating. If this occurs, run the provided file **WindowsInstaller-KB893803-v2-x86.exe** then retry the NET2 installation.

Windows, Windows XP, Windows Vista, and .NET are trademarks of Microsoft Corp.

V. Appendix B: Part and Adapter table

Product Family	Product Datasheet(s)	Adapter Board	Evaluation Software Compatibility	Positive Pressure Port
DLV	DS-0336	DIG-01	YES	В
DLVR	DS-0300	DIG-01	YES	В
DLH	DS-0355	DIG-08	YES	В
DLHR	DS-0350	DIG-08	YES	В
DLLR	DS-0358	DIG-08	YES	В

Summary: Sensor Evaluation Kit EK-01

General description	Easily evaluate Digital Sensors		
	ZIF socket allows quick electrical connection		
Sensor Type	Digital		
Measurement	Display data in one of 12 units of measurement		
Data Display	Capture data to CSV text file		
	Includes sample index and timestamp		
Driver	Uses standard Windows in-box USB drivers		
	No separate download or CD needed		
	Includes: evaluation board, software, 2 adapters & 1 USB cable		

List of supported All Sensors product series and required adapters

EK-01 Product Series Adapter Cross Reference	
Series	Adapter
DLV	DIG-01
DLVR	DIG-01
DLH	DIG-08
DLHR	DIG-08
DLLR	DIG-08

