
Adafruit Circuit Playground Bluefruit
Created by Kattni Rembor

Last updated on 2020-05-15 03:55:15 PM EDT

Overview

Circuit Playground Bluefruit is our third board in the Circuit Playground series, another step towards a perfect
introduction to electronics and programming. We've taken the popular Circuit Playground Express and made it even
better! Now the main chip is an nRF52840 microcontroller which is not only more powerful, but also comes with
Bluetooth Low Energy support for wireless connectivity.

The board is round and has alligator-clip pads around it so you don't have to solder or sew to make it work. You can
power it from USB, a AAA battery pack (http://adafru.it/727), or with a Lipoly battery (for advanced users). Circuit

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 7 of 187

https://www.adafruit.com/products/727
https://www.adafruit.com/product/1128
https://www.adafruit.com/product/1127
https://www.adafruit.com/product/1008

Playground Bluefruit has built-in USB support. Built in USB means you plug it in to program it and it just shows up, no
special cable or adapter required. Just program your code into the board then take it on the go!

You can also use MakeCode (https://adafru.it/C9N)'s block-based GUI coding environment on this board.

Here's some of the great goodies baked in to each Circuit Playground Bluefruit:

1 x nRF52840 Cortex M4 processor with Bluetooth Low Energy support
10 x mini NeoPixels, each one can display any color
1 x Motion sensor (LIS3DH triple-axis accelerometer with tap detection, free-fall detection)
1 x Temperature sensor (thermistor)
1 x Light sensor (phototransistor). Can also act as a color sensor and pulse sensor.
1 x Sound sensor (MEMS microphone)
1 x Mini speaker with class D amplifier (7.5mm magnetic speaker/buzzer)
2 x Push buttons, labeled A and B
1 x Slide switch
8 x alligator-clip friendly input/output pins
Includes I2C, UART, 6 pins that can do analog inputs, multiple PWM outputs
Green "ON" LED so you know its powered
Red "#13" LED for basic blinking
Reset button
2 MB of SPI Flash storage, used primarily with CircuitPython to store code and libraries.
MicroUSB port for programming and debugging
USB port can act like serial port, keyboard, mouse, joystick or MIDI!

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 8 of 187

https://maker.makecode.com/

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 9 of 187

Guided Tour

Let us take you on a tour of your Circuit Playground Bluefruit, which we'll shorten to CPB.

Power and Data

Micro B USB connector
This is at the top of the board. We went with the tried

and true micro-B USB connector for power and/or USB

communication (bootloader, serial, HID, etc). Use with

any computer with a standard data/sync cable.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 10 of 187

https://learn.adafruit.com/assets/80461

JST Battery Input
This is at the bottom of the board. You can take your

CPB anywhere and power it from an external battery.

This pin can take up 6V DC input, and has reverse-

polarity, over-current and thermal protections. The

circuitry inside will use either the battery input power or

USB power, safely switching from one to the other. If

both are connected, it will use whichever has the higher

voltage. Works great with a Lithium Polymer battery or

our 3xAAA battery packs with a JST connector on the

end. There is no built in battery charging (so that you

can use Alkaline or Lithium batteries safely)

Alligator/Croc Clip Pads

To make it super-easy to connect to the microcontroller, we have 14 connection pads. You can solder to them, use
alligator/croc clips, sew with conductive thread, even use small metal screws!

Of the 14 pads, you get a wide range of power pins, I2C,

UART, Analog In, Digital In/Out, PWM, and Analog Out.

Some of them can even sense the touch of your finger!

See the next pinouts page for more details!

Microchips

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 11 of 187

https://learn.adafruit.com/assets/80462
https://learn.adafruit.com/assets/80463

The brains of the operation is the nRF52840 Cortex M4

processor with Bluetooth Low Energy support. It sits at

the top center and is what allows you to run

CircuitPython or Arduino!

The Bluetooth antenna for the nRF52840 Bluetooth

functionality is located in the center of the board. If you

run into issues with Bluetooth range, make sure there's

nothing near the antenna that might interfere, such as

metallic surfaces!

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 12 of 187

https://learn.adafruit.com/assets/80468
https://learn.adafruit.com/assets/80488

We have added a storage chip, called SPI Flash. This is

a very, very small disk drive, only 2 MB large. You can

use this in Arduino or CircuitPython to store files. In

CircuitPython this is where all your code lives, and what

you see when you use the CIRCUITPY drive on your

computer.

LEDs

Green ON LED
To the left of the USB connector. This LED lets you

know that the CPB is powered on. If it's lit, power is

good! If it's dim, flickering or off, there's a power

problem and you will have problems. You can't disable

this light, but you can cover it with electrical tape if you

want to make it black.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 13 of 187

https://learn.adafruit.com/assets/80470
https://learn.adafruit.com/assets/80474

Red #13 LED
To the right of the USB connector. This LED does

double duty. Its connected with a series resistor to the

digital #13 GPIO pin. It pulses nicely when the CPB is in

bootloader mode, and its also handy for when you want

an indicator LED. Many first projects blink this LED to

prove that programming worked.

10 x Color NeoPixel LED
The ten LEDs surrounding the outer edge of the boards

are all full color, RGB LEDs, each one can be set to any

color in the rainbow. Great for beautiful lighting effects!

The NeoPixels will also help you know when the

bootloader is running (they will turn green) or if it failed

to initialize USB when connected to a computer (they

will turn red).

Speaker

The CPB includes a speaker. It's not going to compete with your HiFi stereo, but it can play simple songs and tones.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 14 of 187

https://learn.adafruit.com/assets/80475
https://learn.adafruit.com/assets/80476

The speaker is the squarish gray chunk on the bottom

left of the board. There is a small class D amplifier

connected to the speaker so it can get quite loud! Note:

it won't sound good if too loud, so some

experimentation may be necessary

The amplifier is connected to the PWM output AUDIO

pin -- this pin is also available on one of the connection

pads in the lower right.

If you do not want the internal speaker to make noise,

you can turn it off using the shutdown control on pin #11

Sensors

The Circuit Playground Bluefruit has a large number of sensor inputs that let you add all sorts of interactivity to your
project.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 15 of 187

https://learn.adafruit.com/assets/80478
https://learn.adafruit.com/assets/80479

Light Sensor
There is an analog light sensor, part number ALS-

PT19 (https://adafru.it/tC2), in the top left part of the

board. This can be used to detect ambient light, with

similar spectral response to the human eye.

This sensor is connect to analog pin A8 and will read

between 0 and 1023 with higher values corresponding

to higher light levels. A reading of about 300 is common

for most indoor light levels.

With some clever code, you can use this as a color

sensor or even a pulse sensor!

Temperature Sensor
There is an NTC thermistor (Murata NCP15XH103F03RC)

that we use for temperature sensing. While it isn't an all-

in-one temperature sensor, with linear output, it's easy

to calculate the temperature based on the analog

voltage on analog pin A9. There's a 10K resistor

connected to it as a pull down.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 16 of 187

https://learn.adafruit.com/assets/80480
https://cdn-shop.adafruit.com/product-files/2748/2748%20datasheet.pdf
https://learn.adafruit.com/assets/80481

Microphone Audio Sensor
A MEMS microphone can be used to detect audio levels

and even perform basic FFT functions. Instead of an

analog microphone, that requires an external op-amp

and level management, we've decided to go with a PDM

microphone. This is a digital mic, and is a lot smaller and

less expensive! You will have to use the

CircuitPython/Arduino support libraries to read the audio

volume, you cannot read it like an analog voltage

Motion Sensor
We can sense motion with an accelerometer. This

sensor detects acceleration which means it can be used

to detect when its being moved around, as well as

gravitational pull in order to detect orientation.

The LIS3DH 3-axis XYZ accelerometer is in the dead

center of the board and you can use it to detect tilt,

gravity, motion, as well as 'tap' and 'double tap' strikes

on the board. The LIS3DH is connected to an internal

I2C pinset (not the same as the ones on the pads) and

has an optional interrupt output on digital pin D24.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 17 of 187

https://learn.adafruit.com/assets/80482
https://learn.adafruit.com/assets/80483

Capacitive Touch
The CBP has capacitive touch capabilities. This is a

great way to sense human touch without additional

components. Even animals will work if it's directly

touching their skin!

On the Bluefruit you get seven capacitive touch pads: A1

- A6 and TX. Capacitive touch is supported in both

CircuitPython and Arduino!

Switches & Buttons

There are two large A and B buttons, connected to

digital D4 (Left) and D5 (Right) each. These are

unconnected when not pressed, and connected to 3.3V

when pressed, so they read HIGH. Set the pins D4

(BUTTON_A in CircuitPython) and D5 (BUTTON_B in

CircuitPython) to use an internal pull-down resistor when

reading these pins so they will read LOW when not

pressed.

This small button in the center of the board is for

Resetting the board. You can use this button to restart

or reset the CPB.

If using Arduino or CircuitPython, press this button once

to reset, double-click to enter the bootloader manually.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 18 of 187

https://learn.adafruit.com/assets/80484
https://learn.adafruit.com/assets/80485
https://learn.adafruit.com/assets/80486

There is a single slide switch near the center bottom of

the Circuit Playground Bluefruit. It is connected to digital

D7. The switch is unconnected when slid to the left and

connected to ground when slid to the right. We set pin

D7 to use an internal pull-up resistor so that the switch

will read HIGH when slid to the left and LOW when slid

to the right.

This is not an on-off switch, but you can use code to

have this switch control how you want your project to

behave

Note that you need to use an internal pull-up for the

slide switch, but an internal pull-down for the push-

buttons.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 19 of 187

https://learn.adafruit.com/assets/80487

Pinouts

Despite having only 14 pads with 8 general purpose I/O pins available, there are a lot of possibilities with Circuit
Playground Bluefruit. We went over all the internals in the last page. On this page we'll go through each pin/pad to
explain what you can do with it.

Other than the Audio pad, no external I/O pads are shared with internal sensors/devices, so you do not need to
worry about 'conflicting' pins or interactions!

Power Pads

There are 6 power pads available, equally spaced around the perimeter.

GND - there are 3 x Ground pads. They are all connected together, and are all the signal/power ground
connections
3.3V - there are two 3.3 Volt output pads. They are connected to the output of the onboard regulator. The
regulator can provide about 500mA max, but that includes all the built in parts too! So you should roughly budget
about 300mA available for your usage (450mA if you are not using the onboard NeoPixels)
Vout - there is one Voltage Output pad. This is a special power pad, it will be connected to either the USB
power or the battery input, whichever has the higher voltage. This output does not connect to the regulator so
you can draw as much current as your USB port / Battery can provide. There is a resettable fuse on this pin, so
you can draw about 500mA continuous, and 1 Amp peak before it will trip. If the fuse trips, just wait a minute and
it will automatically reset

If you want to connect chips, sensors, and low power electronics that requires 3.3V clean power, use the 3.3V pads.

If you want to connect servos, NeoPixels, DotStars or other high power electronics that are OK up to 5V, use the Vout
pad.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 20 of 187

Input/Output Pads

Next we will cover the 8 GPIO (General Purpose Input Ouput) pins! For reference you may want to also check out the
datasheet-reference in the downloads section for the core nRF52840. We picked pins that have a lot of capabilities.

Common to all pads

All the GPIO pads can be used as digital inputs, digital outputs, for LEDs, buttons and switches. In addition, A1-A6 can
be used as analog inputs (12-bit ADC) (TX and Audio can not!). All but Audio can be used for capacitive touch. All pads
can also be used as hardware interrupt inputs.

Each pad can provide up to ~20mA of current. Don't connect a motor or other high-power component directly to the
pins! Instead, use a transistor to power the DC motor on/off (https://adafru.it/aUD)

All of the GPIO pads are 3.3V output level, and should not be used with 5V inputs. In general, most 5V devices are OK
with 3.3V output though.

Other than Audio, which is shared with the speaker, all of the pads are completely 'free' pins, they are not used by the
USB connection, LEDs, sensors, etc so you never have to worry about interfering with them when programming.

Each Pin!

Let's start with Audio which is in the bottom right corner, and work our way counter-clockwise. Because the nRF52840
is flexible with PWM pins, you can make any of the pins PWM outputs

Audio (a.k.a D12) - This is a designated pin that is OK with high speed PWM signal, so it's great for playing basic
audio clips - it's also connected to the little speaker on board. In can be digital I/O, but if you do that it will
interfere with the built-in speaker. This is the one pin that cannot be used for capacitive touch.
A1 / D6 - This pin can be digital I/O, or analog input and can be capacitive touch sensor

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 21 of 187

http://learn.adafruit.com/adafruit-arduino-lesson-13-dc-motors

A2 / D9 - This pin can be digital I/O, or analog input and can be capacitive touch sensor
A3 / D10 - This pin can be digital I/O, or analog input and can be capacitive touch sensor
A4 / SCL / D3 - This pin can be digital I/O, or analog input. This pin is also the designated I2C SCL pin, and can
be capacitive touch sensor
A5 / SDA / D2 - This pin can be digital I/O, or analog input. This pin is also the designated I2C SDA pin, and can
be capacitive touch sensor
A6 / RX / D0 - This pin can be digital I/O, or analog Input. This pin has PWM output, Serial Receive, and can be
capacitive touch sensor
TX / D1 - This pin can be digital I/O. This pin has PWM output, Serial Transmit, and can be capacitive touch
sensor

Internally Used Pins!

These are the names of the pins that are used for built in sensors and such! CircuitPython has more user friendly
names available as well for some pins with things like buttons and LEDs on them - these are included in parentheses
where applicable. Both names will work in CircuitPython!

D4 (BUTTON_A) - Left Button A
D5 (BUTTON_B) - Right Button B
D7 (SLIDE_SWITCH)- Slide Switch
D8 (NEOPIXEL) - Built-in 10 NeoPixels
D12 / AUDIO (SPEAKER) - Speaker analog output
D13 - Red LED
A8 (LIGHT) - Light Sensor
A9 (TEMPERATURE) - Temperature Sensor

D24 - PDM mic data
D25 - PDM mic clock
D26 - Internal I2C SCL for accelerometer
D27 - Accelerometer interrupt
D28 - Internal I2C SDA for accelerometer
D29 ~ D34 - QSPI FLASH chip pins

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 22 of 187

What is CircuitPython?

CircuitPython is a programming language designed to simplify experimenting and learning to program on low-cost
microcontroller boards. It makes getting started easier than ever with no upfront desktop downloads needed. Once
you get your board set up, open any text editor, and get started editing code. It's that simple.

CircuitPython is based on Python

Python is the fastest growing programming language. It's taught in schools and universities. It's a high-level
programming language which means it's designed to be easier to read, write and maintain. It supports modules and
packages which means it's easy to reuse your code for other projects. It has a built in interpreter which means there
are no extra steps, like compiling, to get your code to work. And of course, Python is Open Source Software which
means it's free for anyone to use, modify or improve upon.

CircuitPython adds hardware support to all of these amazing features. If you already have Python knowledge, you can
easily apply that to using CircuitPython. If you have no previous experience, it's really simple to get started!

Why would I use CircuitPython?

CircuitPython is designed to run on microcontroller boards. A microcontroller board is a board with a microcontroller
chip that's essentially an itty-bitty all-in-one computer. The board you're holding is a microcontroller board!
CircuitPython is easy to use because all you need is that little board, a USB cable, and a computer with a USB
connection. But that's only the beginning.

Other reasons to use CircuitPython include:

You want to get up and running quickly. Create a file, edit your code, save the file, and it runs immediately.
There is no compiling, no downloading and no uploading needed.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 23 of 187

You're new to programming. CircuitPython is designed with education in mind. It's easy to start learning how to
program and you get immediate feedback from the board.
Easily update your code. Since your code lives on the disk drive, you can edit it whenever you like, you can also
keep multiple files around for easy experimentation.
The serial console and REPL. These allow for live feedback from your code and interactive programming.
File storage. The internal storage for CircuitPython makes it great for data-logging, playing audio clips, and
otherwise interacting with files.
Strong hardware support. There are many libraries and drivers for sensors, breakout boards and other external
components.
It's Python! Python is the fastest-growing programming language. It's taught in schools and universities.
CircuitPython is almost-completely compatible with Python. It simply adds hardware support.

This is just the beginning. CircuitPython continues to evolve, and is constantly being updated. We welcome and
encourage feedback from the community, and we incorporate this into how we are developing CircuitPython. That's
the core of the open source concept. This makes CircuitPython better for you and everyone who uses it!

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 24 of 187

CircuitPython on Circuit Playground
Bluefruit

Install or Update CircuitPython

Follow this quick step-by-step to install or update CircuitPython on your Circuit Playground Bluefruit.

https://adafru.it/FNK

https://adafru.it/FNK

Click the link above and download the latest UF2 file

Download and save it to your Desktop (or wherever is

handy)

Plug your Circuit Playground Bluefruit into your

computer using a known-good data-capable USB cable.

A lot of people end up using charge-only USB cables

and it is very frustrating! So make sure you have a USB

cable you know is good for data sync.

Double-click the small Reset button in the middle of the

CPB (indicated by the red arrow in the image). The ten

NeoPixel LEDs will all turn red, and then will all turn

green. If they turn all red and stay red, check the USB

cable, try another USB port, etc. The little red LED next

to the USB connector will pulse red - this is ok!

If double-clicking doesn't work the first time, try again.

Sometimes it can take a few tries to get the rhythm right!

(If double-clicking doesn't do it, try a single-click!)

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 25 of 187

https://circuitpython.org/board/circuitplayground_bluefruit/
https://learn.adafruit.com/assets/80530
https://learn.adafruit.com/assets/80532

You will see a new disk drive appear called

CPLAYBTBOOT.

Drag the adafruit_circuitpython_etc.uf2 file to

CPLAYBTBOOT.

The LEDs will turn red. Then, the CPLAYBTBOOT drive

will disappear and a new disk drive called CIRCUITPY

will appear.

That's it, you're done! :)

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 26 of 187

https://learn.adafruit.com/assets/80533
https://learn.adafruit.com/assets/80534
https://learn.adafruit.com/assets/80535

Circuit Playground Bluefruit CircuitPython
Libraries

The Circuit Playground Bluefruit is packed full of features like Bluetooth and NeoPixel LEDs. Now that you have
CircuitPython installed on your Circuit Playground Bluefruit, you'll need to install a base set of CircuitPython libraries to
use the features of the board with CircuitPython.

Follow these steps to get the necessary libraries installed.

Installing CircuitPython Libraries on Circuit Playground Bluefruit

If you do not already have a lib folder on your CIRCUITPY drive, create one now.

Then, download the CircuitPython library bundle that matches your version of CircuitPython from CircuitPython.org.

https://adafru.it/ENC

https://adafru.it/ENC

The bundle download as a .zip file. Extract the file. Open

the resulting folder.

Open the lib folder found within.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 27 of 187

https://circuitpython.org/libraries
https://learn.adafruit.com/assets/85257
https://learn.adafruit.com/assets/85258

Once inside, you'll find a lengthy list of folders and .mpy

files. To install a CircuitPython library, you drag the file

or folder from the bundle lib folder to the lib folder on

your CIRCUITPY drive.

Copy the following folders and files from the bundle lib

folder to the lib folder on your CIRCUITPY drive:

adafruit_ble

adafruit_bluefruit_connect

adafruit_bus_device

adafruit_circuitplayground

adafruit_gizmo

adafruit_hid

adafruit_lis3dh.mpy

adafruit_thermistor.mpy

neopixel.mpy

Your lib folder should look like the image on the left.

Now you're all set to use CircuitPython with the features of the Circuit Playground Bluefruit!

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 28 of 187

https://learn.adafruit.com/assets/85259
https://learn.adafruit.com/assets/85694

Installing Mu
Editor

Mu is a simple code editor that works with the Adafruit CircuitPython boards. It's written in Python and works on
Windows, MacOS, Linux and Raspberry Pi. The serial console is built right in so you get immediate feedback from your
board's serial output!

Download and Install Mu

Download Mu

from https://codewith.mu (https://adafru.it/Be6). Click

the Download or Start Here links there for downloads

and installation instructions. The website has a wealth of

other information, including extensive tutorials and and

how-to's.

Using Mu

The first time you start Mu, you will be prompted to

select your 'mode' - you can always change your mind

later. For now please select Adafruit!

The current mode is displayed in the lower right corner

of the window, next to the "gear" icon. If the mode says

"Microbit" or something else, click on that and then

choose "Adafruit" in the dialog box that appears.

Mu is our recommended editor - please use it (unless you are an experienced coder with a favorite editor
already!)�

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 29 of 187

https://learn.adafruit.com/assets/74974
https://codewith.mu/
https://learn.adafruit.com/assets/49641

Mu attempts to auto-detect your board, so please plug

in your CircuitPython device and make sure it shows up

as a CIRCUITPY drive before starting Mu

Now you're ready to code! Lets keep going....

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 30 of 187

https://learn.adafruit.com/assets/49642

Creating and Editing Code

One of the best things about CircuitPython is how simple it is to get code up and running. In this section, we're going to
cover how to create and edit your first CircuitPython program.

To create and edit code, all you'll need is an editor. There are many options. We strongly recommend using Mu! It's
designed for CircuitPython, and it's really simple and easy to use, with a built in serial console!

If you don't or can't use Mu, there are basic text editors built into every operating system such as Notepad on Windows,
TextEdit on Mac, and gedit on Linux. However, many of these editors don't write back changes immediately to files that
you edit. That can cause problems when using CircuitPython. See the Editing Code (https://adafru.it/id3) section below.
If you want to skip that section for now, make sure you do "Eject" or "Safe Remove" on Windows or "sync" on Linux
after writing a file if you aren't using Mu. (This is not a problem on MacOS.)

Creating Code

Open your editor, and create a new file. If you are using

Mu, click the New button in the top left

Copy and paste the following code into your editor:

import board
import digitalio
import time

led = digitalio.DigitalInOut(board.D13)
led.direction = digitalio.Direction.OUTPUT

while True:
 led.value = True
 time.sleep(0.5)
 led.value = False
 time.sleep(0.5)

If you are using Adafruit CLUE, you will need to edit the code to use board.D17 as shown below!�

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 31 of 187

https://learn.adafruit.com/assets/49645

For Adafruit CLUE, you'll need to use board.D17 instead of board.D13 . The rest of the code remains the same. Make

the following change to the led = line:

led = digitalio.DigitalInOut(board.D17)

It will look like this - note that under the while True:
line, the next four lines have spaces to indent them, but

they're indented exactly the same amount. All other

lines have no spaces before the text.

Save this file as code.py on your CIRCUITPY drive.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 32 of 187

https://learn.adafruit.com/assets/49646
https://learn.adafruit.com/assets/49649
https://learn.adafruit.com/assets/49650

On each board you'll find a tiny red LED. It should now be blinking. Once per second

Congratulations, you've just run your first CircuitPython program!

Editing Code

To edit code, open the code.py file on your CIRCUITPY

drive into your editor.

Make the desired changes to your code. Save the file.

That's it!

Your code changes are run as soon as the file is done saving.

There's just one warning we have to give you before we continue...

The CircuitPython code on your board detects when the files are changed or written and will automatically re-start your
code. This makes coding very fast because you save, and it re-runs.

However, you must wait until the file is done being saved before unplugging or resetting your board! On Windows
using some editors this can sometimes take up to 90 seconds, on Linux it can take 30 seconds to complete because
the text editor does not save the file completely. Mac OS does not seem to have this delay, which is nice!

This is really important to be aware of. If you unplug or reset the board before your computer finishes writing the file to
your board, you can corrupt the drive. If this happens, you may lose the code you've written, so it's important to backup
your code to your computer regularly.

There are a few ways to avoid this:

1. Use an editor that writes out the file completely when you save it.

Recommended editors:

mu (https://adafru.it/Be6) is an editor that safely writes all changes (it's also our recommended editor!)
emacs (https://adafru.it/xNA) is also an editor that will fulIy write files on save (https://adafru.it/Be7)
Sublime Text (https://adafru.it/xNB) safely writes all changes
Visual Studio Code (https://adafru.it/Be9) appears to safely write all changes
gedit on Linux appears to safely write all changes
IDLE (https://adafru.it/IWB), in Python 3.8.1 or later, was fixed (https://adafru.it/IWD) to write all changes

Don't Click Reset or Unplug!�

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 33 of 187

https://learn.adafruit.com/assets/49651
https://codewith.mu/
https://www.gnu.org/software/emacs/
https://www.gnu.org/software/emacs/manual/html_node/emacs/Customize-Save.html
https://www.sublimetext.com/
https://code.visualstudio.com/
https://docs.python.org/3/library/idle.html
https://bugs.python.org/issue36807

�

immediately

Recommended only with particular settings or with add-ons:

vim (https://adafru.it/ek9) / vi safely writes all changes. But set up vim to not write swapfiles (https://adafru.it/ELO)
(.swp files: temporary records of your edits) to CIRCUITPY. Run vim with vim -n , set the no swapfile option, or

set the directory option to write swapfiles elsewhere. Otherwise the swapfile writes trigger restarts of your

program.
The PyCharm IDE (https://adafru.it/xNC) is safe if "Safe Write" is turned on in Settings->System Settings-
>Synchronization (true by default).
If you are using Atom (https://adafru.it/fMG), install the fsync-on-save package (https://adafru.it/E9m) so that it will
always write out all changes to files on CIRCUITPY .

SlickEdit (https://adafru.it/DdP) works only if you add a macro to flush the disk (https://adafru.it/ven).

We don't recommend these editors:

notepad (the default Windows editor) and Notepad++ can be slow to write, so we recommend the editors above!
If you are using notepad, be sure to eject the drive (see below)
IDLE in Python 3.8.0 or earlier does not force out changes immediately
nano (on Linux) does not force out changes
geany (on Linux) does not force out changes
Anything else - we haven't tested other editors so please use a recommended one!

2. Eject or Sync the Drive After Writing

If you are using one of our not-recommended-editors, not all is lost! You can still make it work.

On Windows, you can Eject or Safe Remove the CIRCUITPY drive. It won't actually eject, but it will force the operating
system to save your file to disk. On Linux, use the sync command in a terminal to force the write to disk.

Oh No I Did Something Wrong and Now The CIRCUITPY Drive Doesn't Show Up!!!

Don't worry! Corrupting the drive isn't the end of the world (or your board!). If this happens, follow the steps found on
the Troubleshooting page of every board guide to get your board up and running again.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 34 of 187

http://www.vim.org/
https://vi.stackexchange.com/a/179
https://www.jetbrains.com/pycharm/
https://atom.io/
https://atom.io/packages/fsync-on-save
https://www.slickedit.com/
https://forums.adafruit.com/viewtopic.php?f=57&t=144412#p713290
https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting

Back to Editing Code...

Now! Let's try editing the program you added to your board. Open your code.py file into your editor. We'll make a
simple change. Change the first 0.5 to 0.1 . The code should look like this:

import board
import digitalio
import time

led = digitalio.DigitalInOut(board.D13)
led.direction = digitalio.Direction.OUTPUT

while True:
 led.value = True
 time.sleep(0.1)
 led.value = False
 time.sleep(0.5)

Leave the rest of the code as-is. Save your file. See what happens to the LED on your board? Something changed! Do
you know why? Let's find out!

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 35 of 187

Exploring Your First CircuitPython Program

First, we'll take a look at the code we're editing.

Here is the original code again:

import board
import digitalio
import time

led = digitalio.DigitalInOut(board.D13)
led.direction = digitalio.Direction.OUTPUT

while True:
 led.value = True
 time.sleep(0.5)
 led.value = False
 time.sleep(0.5)

Imports & Libraries

Each CircuitPython program you run needs to have a lot of information to work. The reason CircuitPython is so simple
to use is that most of that information is stored in other files and works in the background. These files are called
libraries. Some of them are built into CircuitPython. Others are stored on your CIRCUITPY drive in a folder called lib.

import board
import digitalio
import time

The import statements tells the board that you're going to use a particular library in your code. In this example, we

imported three libraries: board , digitalio , and time . All three of these libraries are built into CircuitPython, so no

separate files are needed. That's one of the things that makes this an excellent first example. You don't need any thing
extra to make it work! board gives you access to the hardware on your board, digitalio lets you access that hardware
as inputs/outputs and time let's you pass time by 'sleeping'

Setting Up The LED

The next two lines setup the code to use the LED.

led = digitalio.DigitalInOut(board.D13)
led.direction = digitalio.Direction.OUTPUT

Your board knows the red LED as D13 . So, we initialise that pin, and we set it to output. We set led to equal the rest

of that information so we don't have to type it all out again later in our code.

Loop-de-loops

The third section starts with a while statement. while True: essentially means, "forever do the following:". while
True: creates a loop. Code will loop "while" the condition is "true" (vs. false), and as True is never False, the code will

loop forever. All code that is indented under while True: is "inside" the loop.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 36 of 187

�

Inside our loop, we have four items:

while True:
 led.value = True
 time.sleep(0.5)
 led.value = False
 time.sleep(0.5)

First, we have led.value = True . This line tells the LED to turn on. On the next line, we have time.sleep(0.5) . This line

is telling CircuitPython to pause running code for 0.5 seconds. Since this is between turning the led on and off, the led
will be on for 0.5 seconds.

The next two lines are similar. led.value = False tells the LED to turn off, and time.sleep(0.5) tells CircuitPython to

pause for another 0.5 seconds. This occurs between turning the led off and back on so the LED will be off for 0.5
seconds too.

Then the loop will begin again, and continue to do so as long as the code is running!

So, when you changed the first 0.5 to 0.1 , you decreased the amount of time that the code leaves the LED on. So it

blinks on really quickly before turning off!

Great job! You've edited code in a CircuitPython program!

What if I don't have the loop?

If you don't have the loop, the code will run to the end and exit. This can lead to some unexpected behavior in
simple programs like this since the "exit" also resets the state of the hardware. This is a different behavior than
running commands via REPL. So if you are writing a simple program that doesn't seem to work, you may need to add
a loop to the end so the program doesn't exit.

The simplest loop would be:

while True:

 pass

And remember - you can press <CTRL><C> to exit the loop.

See also the Behavior section in the docs.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 37 of 187

https://circuitpython.readthedocs.io/en/latest/README.html#behavior

More Changes

We don't have to stop there! Let's keep going. Change the second 0.5 to 0.1 so it looks like this:

while True:
 led.value = True
 time.sleep(0.1)
 led.value = False
 time.sleep(0.1)

Now it blinks really fast! You decreased the both time that the code leaves the LED on and off!

Now try increasing both of the 0.1 to 1 . Your LED will blink much more slowly because you've increased the amount

of time that the LED is turned on and off.

Well done! You're doing great! You're ready to start into new examples and edit them to see what happens! These
were simple changes, but major changes are done using the same process. Make your desired change, save it, and
get the results. That's really all there is to it!

Naming Your Program File

CircuitPython looks for a code file on the board to run. There are four options: code.txt, code.py, main.txt and main.py.
CircuitPython looks for those files, in that order, and then runs the first one it finds. While we suggest using code.py as
your code file, it is important to know that the other options exist. If your program doesn't seem to be updating as you

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 38 of 187

work, make sure you haven't created another code file that's being read instead of the one you're working on.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 39 of 187

Connecting to the Serial Console

One of the staples of CircuitPython (and programming in general!) is something called a "print statement". This is a line
you include in your code that causes your code to output text. A print statement in CircuitPython looks like this:

print("Hello, world!")

This line would result in:

Hello, world!

However, these print statements need somewhere to display. That's where the serial console comes in!

The serial console receives output from your CircuitPython board sent over USB and displays it so you can see it. This
is necessary when you've included a print statement in your code and you'd like to see what you printed. It is also
helpful for troubleshooting errors, because your board will send errors and the serial console will print those too.

The serial console requires a terminal program. A terminal is a program that gives you a text-based interface to perform
various tasks.

sudo apt purge modemmanager

Are you using Mu?

If so, good news! The serial console is built into Mu and will autodetect your board making using the REPL really really
easy.

Please note that Mu does yet not work with nRF52 or ESP8266-based CircuitPython boards, skip down to the next
section for details on using a terminal program.

First, make sure your CircuitPython board is plugged in.

If you are using Windows 7, make sure you installed the

drivers (https://adafru.it/Amd).

If you're on Linux, and are seeing multi-second delays connecting to the serial console, or are seeing "AT"
and other gibberish when you connect, then the modemmanager service might be interfering. Just remove it;
it doesn't have much use unless you're still using dial-up modems. To remove, type this command at a shell:

�

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 40 of 187

https://learn.adafruit.com/assets/49652
file:///welcome-to-circuitpython/installing-circuitpython#windows-7-drivers

Once in Mu, look for the Serial button in the menu and click it.

Setting Permissions on Linux

On Linux, if you see an error box something like the one below when you press the Serial button, you need to add
yourself to a user group to have permission to connect to the serial console.

On Ubuntu and Debian, add yourself to the dialout group by doing:

sudo adduser $USER dialout

After running the command above, reboot your machine to gain access to the group. On other Linux distributions, the
group you need may be different. See Advanced Serial Console on Mac and Linux (https://adafru.it/AAI) for details on
how to add yourself to the right group.

Using Something Else?

If you're not using Mu to edit, are using ESP8266 or nRF52 CircuitPython, or if for some reason you are not a fan of the
built in serial console, you can run the serial console as a separate program.

Windows requires you to download a terminal program, check out this page for more details (https://adafru.it/AAH)

Mac and Linux both have one built in, though other options are available for download, check this page for more
details (https://adafru.it/AAI)

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 41 of 187

https://learn.adafruit.com/welcome-to-circuitpython/advanced-serial-console-on-mac-and-linux
file:///welcome-to-circuitpython/advanced-serial-console-on-windows
file:///welcome-to-circuitpython/advanced-serial-console-on-mac-and-linux

Interacting with the Serial Console

Once you've successfully connected to the serial console, it's time to start using it.

The code you wrote earlier has no output to the serial console. So, we're going to edit it to create some output.

Open your code.py file into your editor, and include a print statement. You can print anything you like! Just include

your phrase between the quotation marks inside the parentheses. For example:

import board
import digitalio
import time

led = digitalio.DigitalInOut(board.D13)
led.direction = digitalio.Direction.OUTPUT

while True:
 print("Hello, CircuitPython!")
 led.value = True
 time.sleep(1)
 led.value = False
 time.sleep(1)

Save your file.

Now, let's go take a look at the window with our connection to the serial console.

Excellent! Our print statement is showing up in our console! Try changing the printed text to something else.

Keep your serial console window where you can see it. Save your file. You'll see what the serial console displays when

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 42 of 187

the board reboots. Then you'll see your new change!

The Traceback (most recent call last): is telling you the last thing your board was doing before you saved your file.

This is normal behavior and will happen every time the board resets. This is really handy for troubleshooting. Let's
introduce an error so we can see how it is used.

Delete the e at the end of True from the line led.value = True so that it says led.value = Tru

Save your file. You will notice that your red LED will stop blinking, and you may have a colored status LED blinking at
you. This is because the code is no longer correct and can no longer run properly. We need to fix it!

Usually when you run into errors, it's not because you introduced them on purpose. You may have 200 lines of code,
and have no idea where your error could be hiding. This is where the serial console can help. Let's take a look!

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 43 of 187

The Traceback (most recent call last): is telling you that the last thing it was able to run was line 10 in your code. The

next line is your error: NameError: name 'Tru' is not defined . This error might not mean a lot to you, but combined

with knowing the issue is on line 10, it gives you a great place to start!

Go back to your code, and take a look at line 10. Obviously, you know what the problem is already. But if you didn't,
you'd want to look at line 10 and see if you could figure it out. If you're still unsure, try googling the error to get some
help. In this case, you know what to look for. You spelled True wrong. Fix the typo and save your file.

Nice job fixing the error! Your serial console is streaming and your red LED Is blinking again.

The serial console will display any output generated by your code. Some sensors, such as a humidity sensor or a
thermistor, receive data and you can use print statements to display that information. You can also use print statements
for troubleshooting. If your code isn't working, and you want to know where it's failing, you can put print statements in
various places to see where it stops printing.

The serial console has many uses, and is an amazing tool overall for learning and programming!

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 44 of 187

The REPL

The other feature of the serial connection is the Read-Evaluate-Print-Loop, or REPL. The REPL allows you to enter
individual lines of code and have them run immediately. It's really handy if you're running into trouble with a particular
program and can't figure out why. It's interactive so it's great for testing new ideas.

To use the REPL, you first need to be connected to the serial console. Once that connection has been established,
you'll want to press Ctrl + C.

If there is code running, it will stop and you'll see Press any key to enter the REPL. Use CTRL-D to reload. Follow those

instructions, and press any key on your keyboard.

The Traceback (most recent call last): is telling you the last thing your board was doing before you pressed Ctrl + C

and interrupted it. The KeyboardInterrupt is you pressing Ctrl + C. This information can be handy when

troubleshooting, but for now, don't worry about it. Just note that it is expected behavior.

If there is no code running, you will enter the REPL immediately after pressing Ctrl + C. There is no information about
what your board was doing before you interrupted it because there is no code running.

Either way, once you press a key you'll see a >>> prompt welcoming you to the REPL!

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 45 of 187

If you have trouble getting to the >>> prompt, try pressing Ctrl + C a few more times.

The first thing you get from the REPL is information about your board.

This line tells you the version of CircuitPython you're using and when it was released. Next, it gives you the type of
board you're using and the type of microcontroller the board uses. Each part of this may be different for your board
depending on the versions you're working with.

This is followed by the CircuitPython prompt.

From this prompt you can run all sorts of commands and code. The first thing we'll do is run help() . This will tell us

where to start exploring the REPL. To run code in the REPL, type it in next to the REPL prompt.

Type help() next to the prompt in the REPL.

Then press enter. You should then see a message.

First part of the message is another reference to the version of CircuitPython you're using. Second, a URL for the
CircuitPython related project guides. Then... wait. What's this? To list built-in modules, please do `help("modules")`.
Remember the libraries you learned about while going through creating code? That's exactly what this is talking about!
This is a perfect place to start. Let's take a look!

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 46 of 187

Type help("modules") into the REPL next to the prompt, and press enter.

This is a list of all the core libraries built into CircuitPython. We discussed how board contains all of the pins on the
board that you can use in your code. From the REPL, you are able to see that list!

Type import board into the REPL and press enter. It'll go to a new prompt. It might look like nothing happened, but

that's not the case! If you recall, the import statement simply tells the code to expect to do something with that

module. In this case, it's telling the REPL that you plan to do something with that module.

Next, type dir(board) into the REPL and press enter.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 47 of 187

This is a list of all of the pins on your board that are available for you to use in your code. Each board's list will differ
slightly depending on the number of pins available. Do you see D13 ? That's the pin you used to blink the red LED!

The REPL can also be used to run code. Be aware that any code you enter into the REPL isn't saved anywhere. If
you're testing something new that you'd like to keep, make sure you have it saved somewhere on your computer as
well!

Every programmer in every programming language starts with a piece of code that says, "Hello, World." We're going to
say hello to something else. Type into the REPL:

print("Hello, CircuitPython!")

Then press enter.

That's all there is to running code in the REPL! Nice job!

You can write single lines of code that run stand-alone. You can also write entire programs into the REPL to test them.
As we said though, remember that nothing typed into the REPL is saved.

There's a lot the REPL can do for you. It's great for testing new ideas if you want to see if a few new lines of code will
work. It's fantastic for troubleshooting code by entering it one line at a time and finding out where it fails. It lets you see
what libraries are available and explore those libraries.

Try typing more into the REPL to see what happens!

Returning to the serial console

When you're ready to leave the REPL and return to the serial console, simply press Ctrl + D. This will reload your board
and reenter the serial console. You will restart the program you had running before entering the REPL. In the console
window, you'll see any output from the program you had running. And if your program was affecting anything visual on
the board, you'll see that start up again as well.

You can return to the REPL at any time!

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 48 of 187

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 49 of 187

CircuitPython Libraries

Each CircuitPython program you run needs to have a lot of information to work. The reason CircuitPython is so simple
to use is that most of that information is stored in other files and works in the background. These files are called
libraries. Some of them are built into CircuitPython. Others are stored on your CIRCUITPY drive in a folder called lib.
Part of what makes CircuitPython so awesome is its ability to store code separately from the firmware itself. Storing
code separately from the firmware makes it easier to update both the code you write and the libraries you depend.

Your board may ship with a lib folder already, it's in the base directory of the drive. If not, simply create the folder
yourself. When you first install CircuitPython, an empty lib directory will be created for you.

CircuitPython libraries work in the same way as regular Python modules so the Python docs (https://adafru.it/rar) are a
great reference for how it all should work. In Python terms, we can place our library files in the lib directory because its
part of the Python path by default.

One downside of this approach of separate libraries is that they are not built in. To use them, one needs to copy them
to the CIRCUITPY drive before they can be used. Fortunately, we provide a bundle full of our libraries.

Our bundle and releases also feature optimized versions of the libraries with the .mpy file extension. These files take
less space on the drive and have a smaller memory footprint as they are loaded.

Installing the CircuitPython Library Bundle

As we continue to develop CircuitPython and create new releases, we will stop supporting older releases.
Visit https://circuitpython.org/downloads to download the latest version of CircuitPython for your board. You
must download the CircuitPython Library Bundle that matches your version of CircuitPython. Please update
CircuitPython and then visit https://circuitpython.org/libraries to download the latest Library Bundle.

�

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 50 of 187

https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://docs.python.org/3/tutorial/modules.html

We're constantly updating and improving our libraries, so we don't (at this time) ship our CircuitPython boards with the
full library bundle. Instead, you can find example code in the guides for your board that depends on external libraries.
Some of these libraries may be available from us at Adafruit, some may be written by community members!

Either way, as you start to explore CircuitPython, you'll want to know how to get libraries on board.

You can grab the latest Adafruit CircuitPython Bundle release by clicking the button below.

Note: Match up the bundle version with the version of CircuitPython you are running - 3.x library for running any
version of CircuitPython 3, 4.x for running any version of CircuitPython 4, etc. If you mix libraries with major
CircuitPython versions, you will most likely get errors due to changes in library interfaces possible during major version
changes.

https://adafru.it/ENC

https://adafru.it/ENC

If you need another version, you can also visit the bundle release page (https://adafru.it/Ayy) which will let you select
exactly what version you're looking for, as well as information about changes.

Either way, download the version that matches your CircuitPython firmware version. If you don't know the version,
look at the initial prompt in the CircuitPython REPL, which reports the version. For example, if you're running v4.0.1,
download the 4.x library bundle. There's also a py bundle which contains the uncompressed python files, you probably
don't want that unless you are doing advanced work on libraries.

After downloading the zip, extract its contents. This is usually done by double clicking on the zip. On Mac OSX, it
places the file in the same directory as the zip.

Open the bundle folder. Inside you'll find two information files, and two folders. One folder is the lib bundle, and the
other folder is the examples bundle.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 51 of 187

https://circuitpython.org/libraries
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/latest/

Now open the lib folder. When you open the folder, you'll see a large number of mpy files and folders

Example Files

All example files from each library are now included in the bundles, as well as an examples-only bundle. These are
included for two main reasons:

Allow for quick testing of devices.
Provide an example base of code, that is easily built upon for individualized purposes.

Copying Libraries to Your Board

First you'll want to create a lib folder on your CIRCUITPY drive. Open the drive, right click, choose the option to create
a new folder, and call it lib. Then, open the lib folder you extracted from the downloaded zip. Inside you'll find a
number of folders and .mpy files. Find the library you'd like to use, and copy it to the lib folder on CIRCUITPY.

This also applies to example files. They are only supplied as raw .py files, so they may need to be converted to .mpy
using the mpy-cross utility if you encounter MemoryErrors . This is discussed in the CircuitPython Essentials

Guide (https://adafru.it/CTw). Usage is the same as described above in the Express Boards section. Note: If you do not
place examples in a separate folder, you would remove the examples from the import statement.

Example: ImportError Due to Missing Library

If you choose to load libraries as you need them, you may write up code that tries to use a library you haven't yet
loaded. We're going to demonstrate what happens when you try to utilise a library that you don't have loaded on your
board, and cover the steps required to resolve the issue.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 52 of 187

https://learn.adafruit.com/circuitpython-essentials/circuitpython-expectations#how-can-i-create-my-own-mpy-files-18-6

This demonstration will only return an error if you do not have the required library loaded into the lib folder on your
CIRCUITPY drive.

Let's use a modified version of the blinky example.

import board
import time
import simpleio

led = simpleio.DigitalOut(board.D13)

while True:
 led.value = True
 time.sleep(0.5)
 led.value = False
 time.sleep(0.5)

Save this file. Nothing happens to your board. Let's check the serial console to see what's going on.

We have an ImportError . It says there is no module named 'simpleio' . That's the one we just included in our code!

Click the link above to download the correct bundle. Extract the lib folder from the downloaded bundle file. Scroll
down to find simpleio.mpy. This is the library file we're looking for! Follow the steps above to load an individual library
file.

The LED starts blinking again! Let's check the serial console.

No errors! Excellent. You've successfully resolved an ImportError !

If you run into this error in the future, follow along with the steps above and choose the library that matches the one
you're missing.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 53 of 187

Library Install on Non-Express Boards

If you have a Trinket M0 or Gemma M0, you'll want to follow the same steps in the example above to install libraries as
you need them. You don't always need to wait for an ImportError as you probably know what library you added to

your code. Simply open the lib folder you downloaded, find the library you need, and drag it to the lib folder on your
CIRCUITPY drive.

You may end up running out of space on your Trinket M0 or Gemma M0 even if you only load libraries as you need
them. There are a number of steps you can use to try to resolve this issue. You'll find them in the Troubleshooting page
in the Learn guides for your board.

Updating CircuitPython Libraries/Examples

Libraries and examples are updated from time to time, and it's important to update the files you have on your
CIRCUITPY drive.

To update a single library or example, follow the same steps above. When you drag the library file to your lib folder, it
will ask if you want to replace it. Say yes. That's it!

A new library bundle is released every time there's an update to a library. Updates include things like bug fixes and
new features. It's important to check in every so often to see if the libraries you're using have been updated.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 54 of 187

�

Frequently Asked Questions

These are some of the common questions regarding CircuitPython and CircuitPython microcontrollers.

I have to continue using CircuitPython 3.x or 2.x, where can I find compatible libraries?

We are no longer building or supporting the CircuitPython 2.x and 3.x library bundles. We highly encourage you to
update CircuitPython to the latest version (https://adafru.it/Em8) and use the current version of the
libraries (https://adafru.it/ENC). However, if for some reason you cannot update, you can find the last available 2.x
build here (https://adafru.it/FJA) and the last available 3.x build here (https://adafru.it/FJB).

Is ESP8266 or ESP32 supported in CircuitPython? Why not?

We are dropping ESP8266 support as of 4.x - For more information please read about it here!

https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-for-esp8266

As we continue to develop CircuitPython and create new releases, we will stop supporting older releases.
Visit https://circuitpython.org/downloads to download the latest version of CircuitPython for your board. You
must download the CircuitPython Library Bundle that matches your version of CircuitPython. Please update
CircuitPython and then visit https://circuitpython.org/libraries to download the latest Library Bundle.

�

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 55 of 187

https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20190903/adafruit-circuitpython-bundle-2.x-mpy-20190903.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20190903/adafruit-circuitpython-bundle-3.x-mpy-20190903.zip
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-for-esp8266

� How do I connect to the Internet with CircuitPython?

If you'd like to add WiFi support, check out our guide on ESP32/ESP8266 as a co-processor.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 56 of 187

https://learn.adafruit.com/adding-a-wifi-co-processor-to-circuitpython-esp8266-esp32

� Is there asyncio support in CircuitPython

We do not have asyncio support in CircuitPython at this time

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 57 of 187

� My RGB NeoPixel/DotStar LED is blinking funny colors - what does it mean?

The status LED can tell you what's going on with your CircuitPython board. Read more here for what the colors
mean!

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 58 of 187

https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting#circuitpython-rgb-status-light-20-18

What is a MemoryError ?

Memory allocation errors happen when you're trying to store too much on the board. The CircuitPython microcontroller
boards have a limited amount of memory available. You can have about 250 lines of code on the M0 Express boards. If
you try to import too many libraries, a combination of large libraries, or run a program with too many lines of code,

your code will fail to run and you will receive a MemoryError in the serial console (REPL).

What do I do when I encounter a MemoryError ?

Try resetting your board. Each time you reset the board, it reallocates the memory. While this is unlikely to resolve your
issue, it's a simple step and is worth trying.

Make sure you are using .mpy versions of libraries. All of the CircuitPython libraries are available in the bundle in a
.mpy format which takes up less memory than .py format. Be sure that you're using the latest library
bundle (https://adafru.it/uap) for your version of CircuitPython.

If that does not resolve your issue, try shortening your code. Shorten comments, remove extraneous or unneeded
code, or any other clean up you can do to shorten your code. If you're using a lot of functions, you could try moving
those into a separate library, creating a .mpy of that library, and importing it into your code.

You can turn your entire file into a .mpy and import that into code.py . This means you will be unable to edit your

code live on the board, but it can save you space.

Can the order of my import statements affect memory?

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 59 of 187

https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases

It can because the memory gets fragmented differently depending on allocation order and the size of objects. Loading
.mpy files uses less memory so its recommended to do that for files you aren't editing.

How can I create my own .mpy files?

You can make your own .mpy versions of files with mpy-cross .

You can download the CircuitPython 2.x version of mpy-cross for your operating system from the CircuitPython

Releases page (https://adafru.it/tBa) under the latest 2.x version.

You can build mpy-cross for CircuitPython 3.x by cloning the CircuitPython GitHub repo (https://adafru.it/tB7), and

running make in the circuitpython/mpy-cross/ directory. Then run ./mpy-cross path/to/foo.py to create a foo.mpy
in the same directory as the original file.

How do I check how much memory I have free?

import gc
gc.mem_free()

Will give you the number of bytes available for use.

Does CircuitPython support interrupts?

No. CircuitPython does not currently support interrupts. We do not have an estimated time for when they will be
included.

Does Feather M0 support WINC1500?

No, WINC1500 will not fit into the M0 flash space.

Can AVRs such as ATmega328 or ATmega2560 run CircuitPython?

No.

Commonly Used Acronyms

CP or CPy = CircuitPython (https://adafru.it/cpy-welcome)
CPC = Circuit Playground Classic (https://adafru.it/ncE)
CPX = Circuit Playground Express (https://adafru.it/wpF)

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 60 of 187

https://github.com/adafruit/circuitpython/releases
https://github.com/adafruit/circuitpython
https://learn.adafruit.com/welcome-to-circuitpython
https://www.adafruit.com/product/3000
https://www.adafruit.com/product/3333

CircuitPython Expectations

Always Run the Latest Version of CircuitPython and Libraries

As we continue to develop CircuitPython and create new releases, we will stop supporting older releases. You need to
update to the latest CircuitPython (https://adafru.it/Em8).

You need to download the CircuitPython Library Bundle that matches your version of CircuitPython. Please update
CircuitPython and then download the latest bundle (https://adafru.it/ENC).

As we release new versions of CircuitPython, we will stop providing the previous bundles as automatically created
downloads on the Adafruit CircuitPython Library Bundle repo. If you must continue to use an earlier version, you can
still download the appropriate version of mpy-cross from the particular release of CircuitPython on the CircuitPython

repo and create your own compatible .mpy library files. However, it is best to update to the latest for both
CircuitPython and the library bundle.

I have to continue using CircuitPython 3.x or 2.x, where can I find compatible
libraries?

We are no longer building or supporting the CircuitPython 2.x and 3.x library bundles. We highly encourage you to
update CircuitPython to the latest version (https://adafru.it/Em8) and use the current version of the
libraries (https://adafru.it/ENC). However, if for some reason you cannot update, you can find the last available 2.x
build here (https://adafru.it/FJA) and the last available 3.x build here (https://adafru.it/FJB).

Switching Between CircuitPython and Arduino

Many of the CircuitPython boards also run Arduino. But how do you switch between the two? Switching between
CircuitPython and Arduino is easy.

If you're currently running Arduino and would like to start using CircuitPython, follow the steps found in Welcome to
CircuitPython: Installing CircuitPython (https://adafru.it/Amd).

If you're currently running CircuitPython and would like to start using Arduino, plug in your board, and then load your
Arduino sketch. If there are any issues, you can double tap the reset button to get into the bootloader and then try
loading your sketch. Always backup any files you're using with CircuitPython that you want to save as they could be
deleted.

That's it! It's super simple to switch between the two.

The Difference Between Express And Non-Express Boards

We often reference "Express" and "Non-Express" boards when discussing CircuitPython. What does this mean?

Express refers to the inclusion of an extra 2MB flash chip on the board that provides you with extra space for

As we continue to develop CircuitPython and create new releases, we will stop supporting older releases.
Visit https://circuitpython.org/downloads to download the latest version of CircuitPython for your board. You
must download the CircuitPython Library Bundle that matches your version of CircuitPython. Please update
CircuitPython and then visit https://circuitpython.org/libraries to download the latest Library Bundle.

�

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 61 of 187

https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20190903/adafruit-circuitpython-bundle-2.x-mpy-20190903.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20190903/adafruit-circuitpython-bundle-3.x-mpy-20190903.zip
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython

CircuitPython and your code. This means that we're able to include more functionality in CircuitPython and you're able
to do more with your code on an Express board than you would on a non-Express board.

Express boards include Circuit Playground Express, ItsyBitsy M0 Express, Feather M0 Express, Metro M0 Express and
Metro M4 Express.

Non-Express boards include Trinket M0, Gemma M0, Feather M0 Basic, and other non-Express Feather M0 variants.

Non-Express Boards: Gemma and Trinket

CircuitPython runs nicely on the Gemma M0 or Trinket M0 but there are some constraints

Small Disk Space

Since we use the internal flash for disk, and that's shared with runtime code, its limited! Only about 50KB of space.

No Audio or NVM

Part of giving up that FLASH for disk means we couldn't fit everything in. There is, at this time, no support for hardware
audio playpack or NVM 'eeprom'. Modules audioio and bitbangio are not included. For that support, check out the

Circuit Playground Express or other Express boards.

However, I2C, UART, capacitive touch, NeoPixel, DotStar, PWM, analog in and out, digital IO, logging storage, and HID
do work! Check the CircuitPython Essentials for examples of all of these.

Differences Between CircuitPython and MicroPython

For the differences between CircuitPython and MicroPython, check out the CircuitPython
documentation (https://adafru.it/Bvz).

Differences Between CircuitPython and Python

Python (also known as CPython) is the language that MicroPython and CircuitPython are based on. There are many
similarities, but there are also many differences. This is a list of a few of the differences.

Python Libraries

Python is advertised as having "batteries included", meaning that many standard libraries are included. Unfortunately,
for space reasons, many Python libraries are not available. So for instance while we wish you could import numpy ,

numpy isn't available. So you may have to port some code over yourself!

Integers in CircuitPython

On the non-Express boards, integers can only be up to 31 bits long. Integers of unlimited size are not supported. The
largest positive integer that can be represented is 2 -1, 1073741823, and the most negative integer possible is -2 , -
1073741824.

As of CircuitPython 3.0, Express boards have arbitrarily long integers as in Python.

Floating Point Numbers and Digits of Precision for Floats in CircuitPython

Floating point numbers are single precision in CircuitPython (not double precision as in Python). The largest floating
point magnitude that can be represented is about +/-3.4e38. The smallest magnitude that can be represented with full

30 30

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 62 of 187

https://circuitpython.readthedocs.io/en/latest/README.html#differences-from-micropython

accuracy is about +/-1.7e-38, though numbers as small as +/-5.6e-45 can be represented with reduced accuracy.

CircuitPython's floats have 8 bits of exponent and 22 bits of mantissa (not 24 like regular single precision floating
point), which is about five or six decimal digits of precision.

Differences between MicroPython and Python

For a more detailed list of the differences between CircuitPython and Python, you can look at the MicroPython
documentation. We keep up with MicroPython stable releases, so check out the core 'differences' they document
here. (https://adafru.it/zwA)

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 63 of 187

http://docs.micropython.org/en/latest/pyboard/genrst/index.html

Troubleshooting

From time to time, you will run into issues when working with CircuitPython. Here are a few things you may encounter
and how to resolve them.

Always Run the Latest Version of CircuitPython and Libraries

As we continue to develop CircuitPython and create new releases, we will stop supporting older releases. You need to
update to the latest CircuitPython. (https://adafru.it/Em8).

You need to download the CircuitPython Library Bundle that matches your version of CircuitPython. Please update
CircuitPython and then download the latest bundle (https://adafru.it/ENC).

As we release new versions of CircuitPython, we will stop providing the previous bundles as automatically created
downloads on the Adafruit CircuitPython Library Bundle repo. If you must continue to use an earlier version, you can
still download the appropriate version of mpy-cross from the particular release of CircuitPython on the CircuitPython

repo and create your own compatible .mpy library files. However, it is best to update to the latest for both
CircuitPython and the library bundle.

I have to continue using CircuitPython 3.x or 2.x, where can I find compatible
libraries?

We are no longer building or supporting the CircuitPython 2.x and 3.x library bundles. We highly encourage you to
update CircuitPython to the latest version (https://adafru.it/Em8) and use the current version of the
libraries (https://adafru.it/ENC). However, if for some reason you cannot update, you can find the last available 2.x
build here (https://adafru.it/FJA) and the last available 3.x build here (https://adafru.it/FJB).

CPLAYBOOT, TRINKETBOOT, FEATHERBOOT, or GEMMABOOT Drive Not
Present

You may have a different board.

Only Adafruit Express boards and the Trinket M0 and Gemma M0 boards ship with the UF2 bootloader
 (https://adafru.it/zbX)installed. Feather M0 Basic, Feather M0 Adalogger, and similar boards use a regular Arduino-
compatible bootloader, which does not show a boardnameBOOT drive.

MakeCode

If you are running a MakeCode (https://adafru.it/zbY) program on Circuit Playground Express, press the reset button
just once to get the CPLAYBOOT drive to show up. Pressing it twice will not work.

Windows 10

Did you install the Adafruit Windows Drivers package by mistake? You don't need to install this package on Windows
10 for most Adafruit boards. The old version (v1.5) can interfere with recognizing your device. Go to Settings -> Apps

As we continue to develop CircuitPython and create new releases, we will stop supporting older releases.
Visit https://circuitpython.org/downloads to download the latest version of CircuitPython for your board. You
must download the CircuitPython Library Bundle that matches your version of CircuitPython. Please update
CircuitPython and then visit https://circuitpython.org/libraries to download the latest Library Bundle.

�

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 64 of 187

https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20190903/adafruit-circuitpython-bundle-2.x-mpy-20190903.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20190903/adafruit-circuitpython-bundle-3.x-mpy-20190903.zip
file:///adafruit-feather-m0-express-designed-for-circuit-python-circuitpython/uf2-bootloader?view=all#uf2-bootloader
file:///makecode/sharing-and-saving?view=all#step-1-bootloader-mode

and uninstall all the "Adafruit" driver programs.

Windows 7

Version 2.0.0.0 or later of the Adafruit Windows Drivers will fix the missing boardnameBOOT drive problem on

Windows 7. To resolve this, first uninstall the old versions of the drivers:

Unplug any boards. In Uninstall or Change a Program (Control Panel->Programs->Uninstall a program), uninstall
everything named "Windows Driver Package - Adafruit Industries LLC ...".

MacOS

DriveDx and its accompanything SAT SMART Driver can interfere with seeing the BOOT drive. See this forum
post (https://adafru.it/sTc) for how to fix the problem.

Now install the new 2.3.0.0 (or higher) Adafruit Windows Drivers Package:

https://adafru.it/AB0

https://adafru.it/AB0

When running the installer, you'll be shown a list of drivers to choose from. You can check and uncheck the
boxes to choose which drivers to install.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 65 of 187

https://forums.adafruit.com/viewtopic.php?f=58&t=161917&p=799309#p799215
https://github.com/adafruit/Adafruit_Windows_Drivers/releases/latest/adafruit_drivers_*.exe

You should now be done! Test by unplugging and replugging the board. You should see the CIRCUITPY drive, and

when you double-click the reset button (single click on Circuit Playground Express running MakeCode), you should see
the appropriate boardnameBOOT drive.

Let us know in the Adafruit support forums (https://adafru.it/jIf) or on the Adafruit Discord () if this does not work for you!

Windows Explorer Locks Up When Accessing boardnameBOOT Drive

On Windows, several third-party programs we know of can cause issues. The symptom is that you try to access the
boardnameBOOT drive, and Windows or Windows Explorer seems to lock up. These programs are known to cause

trouble:

AIDA64: to fix, stop the program. This problem has been reported to AIDA64. They acquired hardware to test,
and released a beta version that fixes the problem. This may have been incorporated into the latest release.
Please let us know in the forums if you test this.
Hard Disk Sentinel
Kaspersky anti-virus: To fix, you may need to disable Kaspersky completely. Disabling some aspects of
Kaspersky does not always solve the problem. This problem has been reported to Kaspersky.
ESET NOD32 anti-virus: We have seen problems with at least version 9.0.386.0, solved by uninstallation.

Copying UF2 to boardnameBOOT Drive Hangs at 0% Copied

On Windows, a Western DIgital (WD) utility that comes with their external USB drives can interfere with copying UF2
files to the boardnameBOOT drive. Uninstall that utility to fix the problem.

CIRCUITPY Drive Does Not Appear

Kaspersky anti-virus can block the appearance of the CIRCUITPY drive. We haven't yet figured out a settings change

that prevents this. Complete uninstallation of Kaspersky fixes the problem.

Norton anti-virus can interfere with CIRCUITPY . A user has reported this problem on Windows 7. The user turned off

both Smart Firewall and Auto Protect, and CIRCUITPY then appeared.

Serial Console in Mu Not Displaying Anything

There are times when the serial console will accurately not display anything, such as, when no code is currently
running, or when code with no serial output is already running before you open the console. However, if you find
yourself in a situation where you feel it should be displaying something like an error, consider the following.

Depending on the size of your screen or Mu window, when you open the serial console, the serial console panel may
be very small. This can be a problem. A basic CircuitPython error takes 10 lines to display!

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 66 of 187

https://forums.adafruit.com
https://adafru.it/discord

Auto-reload is on. Simply save files over USB to run them or enter REPL to disable.
code.py output:
Traceback (most recent call last):
 File "code.py", line 7
SyntaxError: invalid syntax

Press any key to enter the REPL. Use CTRL-D to reload.

More complex errors take even more lines!

Therefore, if your serial console panel is five lines tall or less, you may only see blank lines or blank lines followed by
Press any key to enter the REPL. Use CTRL-D to reload.. If this is the case, you need to either mouse over the top of

the panel to utilise the option to resize the serial panel, or use the scrollbar on the right side to scroll up and find your
message.

This applies to any kind of serial output whether it be error messages or print statements. So before you start trying to
debug your problem on the hardware side, be sure to check that you haven't simply missed the serial messages due to
serial output panel height.

CircuitPython RGB Status Light

Nearly all Adafruit CircuitPython-capable boards have a single NeoPixel or DotStar RGB LED on the board that
indicates the status of CircuitPython. A few boards designed before CircuitPython existed, such as the Feather M0
Basic, do not.

Circuit Playground Express and Circuit Playground Bluefruit have multiple RGB LEDs, but do NOT have a status LED.
The LEDs are all green when in the bootloader. They do NOT indicate any status while running CircuitPython.

Here's what the colors and blinking mean:

steady GREEN: code.py (or code.txt , main.py , or main.txt) is running

pulsing GREEN: code.py (etc.) has finished or does not exist

steady YELLOW at start up: (4.0.0-alpha.5 and newer) CircuitPython is waiting for a reset to indicate that it should
start in safe mode
pulsing YELLOW: Circuit Python is in safe mode: it crashed and restarted
steady WHITE: REPL is running
steady BLUE: boot.py is running

Colors with multiple flashes following indicate a Python exception and then indicate the line number of the error. The
color of the first flash indicates the type of error:

GREEN: IndentationError
CYAN: SyntaxError
WHITE: NameError

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 67 of 187

ORANGE: OSError
PURPLE: ValueError
YELLOW: other error

These are followed by flashes indicating the line number, including place value. WHITE flashes are thousands' place,
BLUE are hundreds' place, YELLOW are tens' place, and CYAN are one's place. So for example, an error on line 32
would flash YELLOW three times and then CYAN two times. Zeroes are indicated by an extra-long dark gap.

ValueError: Incompatible .mpy file.

This error occurs when importing a module that is stored as a mpy binary file that was generated by a different

version of CircuitPython than the one its being loaded into. In particular, the mpy binary format changed between

CircuitPython versions 2.x and 3.x, as well as between 1.x and 2.x.

So, for instance, if you upgraded to CircuitPython 3.x from 2.x you’ll need to download a newer version of the library
that triggered the error on import . They are all available in the Adafruit bundle (https://adafru.it/y8E).

Make sure to download a version with 2.0.0 or higher in the filename if you're using CircuitPython version 2.2.4, and
the version with 3.0.0 or higher in the filename if you're using CircuitPython version 3.0.

CIRCUITPY Drive Issues

You may find that you can no longer save files to your CIRCUITPY drive. You may find that your CIRCUITPY stops

showing up in your file explorer, or shows up as NO_NAME . These are indicators that your filesystem has issues.

First check - have you used Arduino to program your board? If so, CircuitPython is no longer able to provide the USB
services. Reset the board so you get a boardnameBOOT drive rather than a CIRCUITPY drive, copy the latest version

of CircuitPython (.uf2) back to the board, then Reset. This may restore CIRCUITPY functionality.

If still broken - When the CIRCUITPY disk is not safely ejected before being reset by the button or being disconnected

from USB, it may corrupt the flash drive. It can happen on Windows, Mac or Linux.

In this situation, the board must be completely erased and CircuitPython must be reloaded onto the board.

Easiest Way: Use storage.erase_filesystem()
Starting with version 2.3.0, CircuitPython includes a built-in function to erase and reformat the filesystem. If you have an
older version of CircuitPython on your board, you can update to the newest version (https://adafru.it/Amd) to do this.

1. Connect to the CircuitPython REPL (https://adafru.it/Bec) using Mu or a terminal program.
2. Type:

>>> import storage
>>> storage.erase_filesystem()

CIRCUITPY will be erased and reformatted, and your board will restart. That's it!

You WILL lose everything on the board when you complete the following steps. If possible, make a copy of
your code before continuing.�

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 68 of 187

https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/latest
file:///welcome-to-circuitpython/installing-circuitpython
file:///welcome-to-circuitpython/kattni-connecting-to-the-serial-console

Old Way: For the Circuit Playground Express, Feather M0 Express, and Metro M0 Express:

If you can't get to the REPL, or you're running a version of CircuitPython before 2.3.0, and you don't want to upgrade,
you can do this.

 1. Download the correct erase file:

https://adafru.it/AdI

https://adafru.it/AdI

https://adafru.it/AdJ

https://adafru.it/AdJ

https://adafru.it/EVK

https://adafru.it/EVK

https://adafru.it/AdK

https://adafru.it/AdK

https://adafru.it/EoM

https://adafru.it/EoM

https://adafru.it/DjD

https://adafru.it/DjD

https://adafru.it/DBA

https://adafru.it/DBA

https://adafru.it/Eca

https://adafru.it/Eca

https://adafru.it/Gnc

https://adafru.it/Gnc

https://adafru.it/GAN

https://adafru.it/GAN

https://adafru.it/GAO

https://adafru.it/GAO

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 69 of 187

https://cdn-learn.adafruit.com/assets/assets/000/048/745/original/flash_erase_express.ino.circuitplay.uf2?1512152080
https://cdn-learn.adafruit.com/assets/assets/000/048/746/original/flash_erase_express.ino.feather_m0_express.uf2?1512152098
https://cdn-learn.adafruit.com/assets/assets/000/076/217/original/flash_erase.ino.feather_m4.uf2
https://cdn-learn.adafruit.com/assets/assets/000/048/747/original/flash_erase_express.ino.metro_m0.uf2?1512152103
https://cdn-learn.adafruit.com/assets/assets/000/073/820/original/Metro_M4_QSPI_Eraser.UF2?1553805937
https://cdn-learn.adafruit.com/assets/assets/000/067/535/original/Trellis_M4_QSPI_Eraser.UF2?1544719380
https://cdn-learn.adafruit.com/assets/assets/000/069/314/original/GC_M4_QSPI_Erase.UF2?1547404471
https://cdn-learn.adafruit.com/assets/assets/000/072/252/original/PYPORTAL_QSPI_Eraser.UF2?1551738305
https://cdn-learn.adafruit.com/assets/assets/000/082/950/original/CP_Bluefruit_QSPI_Erase.UF2?1572026649
https://cdn-learn.adafruit.com/assets/assets/000/083/330/original/M4SK_QSPI_Eraser.UF2?1572551433
https://cdn-learn.adafruit.com/assets/assets/000/083/331/original/PyBadge_QSPI_Eraser.UF2?1572551613

https://adafru.it/Jat

https://adafru.it/Jat

 2. Double-click the reset button on the board to bring up the boardnameBOOT drive.

 3. Drag the erase .uf2 file to the boardnameBOOT drive.

 4. The onboard NeoPixel will turn yellow or blue, indicating the erase has started.
 5. After approximately 15 seconds, the mainboard NeoPixel will light up green. On the NeoTrellis M4 this is the
first NeoPixel on the grid
 6. Double-click the reset button on the board to bring up the boardnameBOOT drive.

 7. Drag the appropriate latest release of CircuitPython (https://adafru.it/Amd) .uf2 file to

the boardnameBOOT drive.

It should reboot automatically and you should see CIRCUITPY in your file explorer again.

If the LED flashes red during step 5, it means the erase has failed. Repeat the steps starting with 2.

If you haven't already downloaded the latest release of CircuitPython for your board, check out the installation
page (https://adafru.it/Amd). You'll also need to install your libraries and code!

Old Way: For Non-Express Boards with a UF2 bootloader (Gemma M0, Trinket M0):

If you can't get to the REPL, or you're running a version of CircuitPython before 2.3.0, and you don't want to upgrade,
you can do this.

 1. Download the erase file:

https://adafru.it/AdL

https://adafru.it/AdL

 2. Double-click the reset button on the board to bring up the boardnameBOOT drive.

 3. Drag the erase .uf2 file to the boardnameBOOT drive.

 4. The boot LED will start flashing again, and the boardnameBOOT drive will reappear.

 5. Drag the appropriate latest release CircuitPython (https://adafru.it/Amd) .uf2 file to the boardnameBOOT drive.

It should reboot automatically and you should see CIRCUITPY in your file explorer again.

If you haven't already downloaded the latest release of CircuitPython for your board, check out the installation
page (https://adafru.it/Amd) You'll also need to install your libraries and code!

Old Way: For non-Express Boards without a UF2 bootloader (Feather M0 Basic Proto,
Feather Adalogger, Arduino Zero):

If you are running a version of CircuitPython before 2.3.0, and you don't want to upgrade, or you can't get to the REPL,
you can do this.

Just follow these directions to reload CircuitPython using bossac (https://adafru.it/Bed), which will erase and re-create

CIRCUITPY .

Running Out of File Space on Non-Express Boards

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 70 of 187

https://cdn-learn.adafruit.com/assets/assets/000/088/454/original/CLUE_Flash_Erase.UF2?1581873830
file:///welcome-to-circuitpython/installing-circuitpython
file:///welcome-to-circuitpython/installing-circuitpython
https://cdn-learn.adafruit.com/assets/assets/000/048/748/original/erase_m0.uf2?1512152239
file:///welcome-to-circuitpython/installing-circuitpython
file:///welcome-to-circuitpython/installing-circuitpython
file:///welcome-to-circuitpython/non-uf2-installation

The file system on the board is very tiny. (Smaller than an ancient floppy disk.) So, its likely you'll run out of space but
don't panic! There are a couple ways to free up space.

The board ships with the Windows 7 serial driver too! Feel free to delete that if you don't need it or have already
installed it. Its ~12KiB or so.

Delete something!

The simplest way of freeing up space is to delete files from the drive. Perhaps there are libraries in the lib folder that

you aren't using anymore or test code that isn't in use. Don't delete the lib folder completely, though, just remove

what you don't need.

Use tabs

One unique feature of Python is that the indentation of code matters. Usually the recommendation is to indent code
with four spaces for every indent. In general, we recommend that too. However, one trick to storing more human-
readable code is to use a single tab character for indentation. This approach uses 1/4 of the space for indentation and
can be significant when we're counting bytes.

MacOS loves to add extra files.

Luckily you can disable some of the extra hidden files that MacOS adds by running a few commands to disable search
indexing and create zero byte placeholders. Follow the steps below to maximize the amount of space available on
MacOS:

Prevent & Remove MacOS Hidden Files

First find the volume name for your board. With the board plugged in run this command in a terminal to list all the
volumes:

ls -l /Volumes

Look for a volume with a name like CIRCUITPY (the default for CircuitPython). The full path to the volume is

the /Volumes/CIRCUITPY path.

Now follow the steps from this question (https://adafru.it/u1c) to run these terminal commands that stop hidden files
from being created on the board:

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 71 of 187

http://apple.stackexchange.com/questions/6707/how-to-stop-os-x-from-writing-spotlight-and-trash-files-to-memory-cards-and-usb/7135#7135

mdutil -i off /Volumes/CIRCUITPY
cd /Volumes/CIRCUITPY
rm -rf .{,_.}{fseventsd,Spotlight-V*,Trashes}
mkdir .fseventsd
touch .fseventsd/no_log .metadata_never_index .Trashes
cd -

Replace /Volumes/CIRCUITPY in the commands above with the full path to your board's volume if it's different. At this

point all the hidden files should be cleared from the board and some hidden files will be prevented from being created.

Alternatively, with CircuitPython 4.x and above, the special files and folders mentioned above will be created
automatically if you erase and reformat the filesystem. WARNING: Save your files first! Do this in the REPL:

>>> import storage
>>> storage.erase_filesystem

However there are still some cases where hidden files will be created by MacOS. In particular if you copy a file that
was downloaded from the internet it will have special metadata that MacOS stores as a hidden file. Luckily you can run
a copy command from the terminal to copy files without this hidden metadata file. See the steps below.

Copy Files on MacOS Without Creating Hidden Files

Once you've disabled and removed hidden files with the above commands on MacOS you need to be careful to copy
files to the board with a special command that prevents future hidden files from being created. Unfortunately you
cannot use drag and drop copy in Finder because it will still create these hidden extended attribute files in some cases
(for files downloaded from the internet, like Adafruit's modules).

To copy a file or folder use the -X option for the cp command in a terminal. For example to copy a foo.mpy file to the

board use a command like:

 cp -X foo.mpy /Volumes/CIRCUITPY

(Replace foo.mpy with the name of the file you want to copy.) Or to copy a folder and all of its child files/folders use a

command like:

cp -rX folder_to_copy /Volumes/CIRCUITPY

If you are copying to the lib folder, or another folder, make sure it exists before copying.

if lib does not exist, you'll create a file named lib !
cp -X foo.mpy /Volumes/CIRCUITPY/lib
This is safer, and will complain if a lib folder does not exist.
cp -X foo.mpy /Volumes/CIRCUITPY/lib/

Other MacOS Space-Saving Tips

If you'd like to see the amount of space used on the drive and manually delete hidden files here's how to do so. First
list the amount of space used on the CIRCUITPY drive with the df command:

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 72 of 187

Lets remove the ._ files first.

Whoa! We have 13Ki more than before! This space can now be used for libraries and code!

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 73 of 187

Uninstalling CircuitPython

A lot of our boards can be used with multiple programming languages. For example, the Circuit Playground Express
can be used with MakeCode, Code.org CS Discoveries, CircuitPython and Arduino.

Maybe you tried CircuitPython and want to go back to MakeCode or Arduino? Not a problem

You can always remove/re-install CircuitPython whenever you want! Heck, you can change your mind every day!

Backup Your Code

Before uninstalling CircuitPython, don't forget to make a backup of the code you have on the little disk drive. That
means your main.py or code.py any other files, the lib folder etc. You may lose these files when you remove
CircuitPython, so backups are key! Just drag the files to a folder on your laptop or desktop computer like you would
with any USB drive.

Moving Circuit Playground Express to MakeCode

On the Circuit Playground Express (this currently does NOT apply to Circuit Playground Bluefruit), if you want to go
back to using MakeCode, it's really easy. Visit makecode.adafruit.com (https://adafru.it/wpC) and find the program you
want to upload. Click Download to download the .uf2 file that is generated by MakeCode.

Now double-click your CircuitPython board until you see the onboard LED(s) turn green and the ...BOOT directory
shows up.

Then find the downloaded MakeCode .uf2 file and drag it to the ...BOOT drive.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 74 of 187

https://makecode.adafruit.com

Your MakeCode is now running and CircuitPython has been removed. Going forward you only have to single click the
reset button

Moving to Arduino

If you want to change your firmware to Arduino, it's also pretty easy.

Start by plugging in your board, and double-clicking reset until you get the green onboard LED(s) - just like with
MakeCode

Within Arduino IDE, select the matching board, say Circuit Playground Express

Select the correct matching Port:

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 75 of 187

Create a new simple Blink sketch example:

// the setup function runs once when you press reset or power the board
void setup() {
 // initialize digital pin 13 as an output.
 pinMode(13, OUTPUT);
}

// the loop function runs over and over again forever
void loop() {
 digitalWrite(13, HIGH); // turn the LED on (HIGH is the voltage level)
 delay(1000); // wait for a second
 digitalWrite(13, LOW); // turn the LED off by making the voltage LOW
 delay(1000); // wait for a second
}

Make sure the LED(s) are still green, then click Upload to upload Blink. Once it has uploaded successfully, the serial
Port will change so re-select the new Port!

Once Blink is uploaded you should no longer need to double-click to enter bootloader mode, Arduino will automatically
reset when you upload

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 76 of 187

Welcome to the Community!

CircuitPython is a programming language that's super simple to get started with and great for learning. It runs on
microcontrollers and works out of the box. You can plug it in and get started with any text editor. The best part?
CircuitPython comes with an amazing, supportive community.

Everyone is welcome! CircuitPython is Open Source. This means it's available for anyone to use, edit, copy and
improve upon. This also means CircuitPython becomes better because of you being a part of it. It doesn't matter
whether this is your first microcontroller board or you're a computer engineer, you have something important to offer
the Adafruit CircuitPython community. We're going to highlight some of the many ways you can be a part of it!

Adafruit Discord

The Adafruit Discord server is the best place to start. Discord is where the community comes together to volunteer and
provide live support of all kinds. From general discussion to detailed problem solving, and everything in between,
Discord is a digital maker space with makers from around the world.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 77 of 187

There are many different channels so you can choose the one best suited to your needs. Each channel is shown on
Discord as "#channelname". There's the #projecthelp channel for assistance with your current project or help coming
up with ideas for your next one. There's the #showandtell channel for showing off your newest creation. Don't be afraid
to ask a question in any channel! If you're unsure, #general is a great place to start. If another channel is more likely to
provide you with a better answer, someone will guide you.

The CircuitPython channel is where to go with your CircuitPython questions. #circuitpython is there for new users and
developers alike so feel free to ask a question or post a comment! Everyone of any experience level is welcome to join
in on the conversation. We'd love to hear what you have to say!

The easiest way to contribute to the community is to assist others on Discord. Supporting others doesn't always mean
answering questions. Join in celebrating successes! Celebrate your mistakes! Sometimes just hearing that someone
else has gone through a similar struggle can be enough to keep a maker moving forward.

The Adafruit Discord is the 24x7x365 hackerspace that you can bring your granddaughter to.

Visit https://adafru.it/discord ()to sign up for Discord. We're looking forward to meeting you!

Adafruit Forums

The Adafruit Forums (https://adafru.it/jIf) are the perfect place for support. Adafruit has wonderful paid support folks to
answer any questions you may have. Whether your hardware is giving you issues or your code doesn't seem to be
working, the forums are always there for you to ask. You need an Adafruit account to post to the forums. You can use
the same account you use to order from Adafruit.

While Discord may provide you with quicker responses than the forums, the forums are a more reliable source of
information. If you want to be certain you're getting an Adafruit-supported answer, the forums are the best place to be.

There are forum categories that cover all kinds of topics, including everything Adafruit. The Adafruit CircuitPython and
MicroPython (https://adafru.it/xXA) category under "Supported Products & Projects" is the best place to post your
CircuitPython questions.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 78 of 187

https://adafru.it/discord
https://forums.adafruit.com
https://forums.adafruit.com/viewforum.php?f=60

Be sure to include the steps you took to get to where you are. If it involves wiring, post a picture! If your code is giving
you trouble, include your code in your post! These are great ways to make sure that there's enough information to
help you with your issue.

You might think you're just getting started, but you definitely know something that someone else doesn't. The great
thing about the forums is that you can help others too! Everyone is welcome and encouraged to provide constructive
feedback to any of the posted questions. This is an excellent way to contribute to the community and share your
knowledge!

Adafruit Github

Whether you're just beginning or are life-long programmer who would like to contribute, there are ways for everyone
to be a part of building CircuitPython. GitHub is the best source of ways to contribute to
CircuitPython (https://adafru.it/tB7) itself. If you need an account, visit https://github.com/ (https://adafru.it/d6C)and sign
up.

If you're new to GitHub or programming in general, there are great opportunities for you. Head over to
adafruit/circuitpython (https://adafru.it/tB7) on GitHub, click on "Issues (https://adafru.it/Bee)", and you'll find a list that
includes issues labeled "good first issue (https://adafru.it/Bef)". These are things we've identified as something that
someone with any level of experience can help with. These issues include options like updating documentation,
providing feedback, and fixing simple bugs.

Already experienced and looking for a challenge? Checkout the rest of the issues list and you'll find plenty of ways to
contribute. You'll find everything from new driver requests to core module updates. There's plenty of opportunities for
everyone at any level!

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 79 of 187

https://github.com/adafruit/circuitpython
https://github.com/
https://github.com/adafruit/circuitpython
https://github.com/adafruit/circuitpython/issues?page=1&q=is%253Aissue+is%253Aopen
https://github.com/adafruit/circuitpython/issues?q=is%253Aissue+is%253Aopen+label%253A%2522good+first+issue%2522

When working with CircuitPython, you may find problems. If you find a bug, that's great! We love bugs! Posting a
detailed issue to GitHub is an invaluable way to contribute to improving CircuitPython. Be sure to include the steps to
replicate the issue as well as any other information you think is relevant. The more detail, the better!

Testing new software is easy and incredibly helpful. Simply load the newest version of CircuitPython or a library onto
your CircuitPython hardware, and use it. Let us know about any problems you find by posting a new issue to GitHub.
Software testing on both current and beta releases is a very important part of contributing CircuitPython. We can't
possibly find all the problems ourselves! We need your help to make CircuitPython even better.

On GitHub, you can submit feature requests, provide feedback, report problems and much more. If you have
questions, remember that Discord and the Forums are both there for help!

ReadTheDocs

ReadTheDocs (https://adafru.it/Beg) is a an excellent resource for a more in depth look at CircuitPython. This is where
you'll find things like API documentation and details about core modules. There is also a Design Guide that includes
contribution guidelines for CircuitPython.

RTD gives you access to a low level look at CircuitPython. There are details about each of the core
modules (https://adafru.it/Beh). Each module lists the available libraries. Each module library page lists the available
parameters and an explanation for each. In many cases, you'll find quick code examples to help you understand how
the modules and parameters work, however it won't have detailed explanations like the Learn Guides. If you want help
understanding what's going on behind the scenes in any CircuitPython code you're writing, ReadTheDocs is there to
help!

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 80 of 187

https://circuitpython.readthedocs.io/
https://circuitpython.readthedocs.io/en/2.x/shared-bindings/index.html

CircuitPython Made
Easy

CircuitPython Made Easy (https://adafru.it/BQj)

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 81 of 187

https://learn.adafruit.com/circuitpython-made-easy-on-circuit-playground-express

CircuitPython
Playground

Here are examples of some of the many things you can do with the Circuit Playground Bluefruit with CircuitPython!

Many of the following examples are shown using Circuit Playground Express. The code works exactly the
same way on the Circuit Playground Bluefruit. Simply copy the code and follow along with your Circuit
Playground Bluefruit!

�

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 82 of 187

CircuitPython Built-
Ins

CircuitPython comes 'with the kitchen sink' - a lot of the things you know and love about classic Python 3 (sometimes
called CPython) already work. There are a few things that don't but we'll try to keep this list updated as we add more
capabilities!

Thing That Are Built In and Work

Flow Control

All the usual if , elif , else , for , while work just as expected.

Math

import math will give you a range of handy mathematical functions.

>>> dir(math)
['__name__', 'e', 'pi', 'sqrt', 'pow', 'exp', 'log', 'cos', 'sin', 'tan', 'acos', 'asin', 'atan', 'atan2', 'ceil', 'copysign', 'fabs',
'floor', 'fmod', 'frexp', 'ldexp', 'modf', 'isfinite', 'isinf', 'isnan', 'trunc', 'radians', 'degrees']

CircuitPython supports 30-bit wide floating point values so you can use int and float whenever you expect.

Tuples, Lists, Arrays, and Dictionaries

You can organize data in () , [] , and {} including strings, objects, floats, etc.

Classes, Objects and Functions

We use objects and functions extensively in our libraries so check out one of our many examples like this MCP9808
library (https://adafru.it/BfQ) for class examples.

Lambdas

Yep! You can create function-functions with lambda just the way you like em:

>>> g = lambda x: x**2
>>> g(8)
64

Random Numbers

To obtain random numbers:

import random

random.random() will give a floating point number from 0 to 1.0 .

random.randint(min, max) will give you an integer number between min and max .

This is not an exhaustive list! It's simply some of the many features you can use.�

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 83 of 187

https://github.com/adafruit/Adafruit_CircuitPython_MCP9808/blob/master/adafruit_mcp9808.py

CircuitPython Digital In &
Out

The first part of interfacing with hardware is being able to manage digital inputs and outputs. With Circuitpython it's
super easy!

This quick-start example shows how you can use one of the Circuit Playground Express buttons as an input to control
another digital output - the built in LED

Copy and paste the code block into code.py using your favorite text editor, and save the file, to run the demo

Circuit Playground digitalio example

import time
import board
import digitalio

led = digitalio.DigitalInOut(board.D13)
led.switch_to_output()

button = digitalio.DigitalInOut(board.BUTTON_A)
button.switch_to_input(pull=digitalio.Pull.DOWN)

while True:
 if button.value: # button is pushed
 led.value = True
 else:
 led.value = False

 time.sleep(0.01)

Though the following example uses the Circuit Playground Express to demonstrate, the code works exactly
the same way with the Circuit Playground Bluefruit. Simply copy the code and follow along with your Circuit
Playground Bluefruit!

�

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 84 of 187

Note that we made the code a little less 'pythonic' than necessary, the if/then could be replaced with a simple
led.value = not button.value but I wanted to make it super clear how to test the inputs. When the interpreter gets to

evaluating button.value that is when it will read the digital input.

Press Button A (the one on the left), and the onboard red LED will turn on!

Note that on the M0/SAMD based CircuitPython boards, at least, you can also have internal pullups with Pull.UP when

using external buttons, but the built in buttons require Pull.DOWN .

Maybe you're setting up your own external button with pullup or pulldown resistor. If you want to turn off the internal
pullup/pulldown simply include button.switch_to_input() .

Going Beyond the Lesson!

It's time to flex your new learnings and try something different!!

Experiment 1

See if you can adjust your code so that you use Button B instead of Button A.

It only takes a small change to switch buttons. If you get stuck, click on the blurry text below to reveal a hint and then
the answer:

You need to change one single, solitary letter!You need to change one single, solitary letter!

You need to change one single, solitary letter!

We're using the built-in pushbuttons in this example because it's very easy to get started, but you can use
ALL KINDS of different buttons and switches, even homemade ones such as tinfoil or pennies, as digital
inputs connected to the Digital IO pads!

�

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 85 of 187

button = DigitalInOut(board.BUTTON_B)button = DigitalInOut(board.BUTTON_B)

button = DigitalInOut(board.BUTTON_B)

Experiment 2

Perhaps you want to be sure there are no accidental illuminations of the red LED! Make it so that BOTH buttons must
be pressed in order to light the red LED.

Hints:

You'll need to declare a variable for the second button, just as you did with the first. You'll also need to set it up as anYou'll need to declare a variable for the second button, just as you did with the first. You'll also need to set it up as an

You'll need to declare a variable for the second button, just as you did with the first. You'll also need to set it up as an

input, with pull down resistance.input, with pull down resistance.

input, with pull down resistance.

It's a good idea to rename the original It's a good idea to rename the original

It's a good idea to rename the original

buttonbutton

button

 variable to variable to

 variable to

buttonA, buttonA,

buttonA,

and the new setand the new set

and the new set

to to

to

buttonB.buttonB.

buttonB.

To check both buttons in the 'if' statement, you'll use an 'and' to string together both valueTo check both buttons in the 'if' statement, you'll use an 'and' to string together both value

To check both buttons in the 'if' statement, you'll use an 'and' to string together both value

checks. checks.

checks.

 if buttonA.value == True and buttonB.value == if buttonA.value == True and buttonB.value ==

 if buttonA.value == True and buttonB.value ==

True:True:

True:

Experiment 3

Try testing the slide switch instead of the buttons. For the slide switch you need to use Pull.UP instead of Pull.DOWN.

Hints:

switch = DigitalInOut(board.SLIDE_SWITCH)switch = DigitalInOut(board.SLIDE_SWITCH)

switch = DigitalInOut(board.SLIDE_SWITCH)

switch.direction = Direction.INPUTswitch.direction = Direction.INPUT

switch.direction = Direction.INPUT

switch.pull = Pull.UPswitch.pull = Pull.UP

switch.pull = Pull.UP

if switch.value is True: # switch is slid to theif switch.value is True: # switch is slid to the

if switch.value is True: # switch is slid to the

leftleft

left

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 86 of 187

CircuitPython Analog In

This quick-start example shows how you can read the analog voltage of a potentiometer connected to the Circuit
Playground Express.

First, connect your potentiometer to the Circuit Playground Express using three alligator clip leads, as shown. The
connections are:

Left pot connection to 3.3V
Center pot (wiper) to A1
Right pot connection to GND

Copy and paste the code block into code.py using your favorite code editor, and save the file, to run the demo.

Though the following example uses the Circuit Playground Express to demonstrate, the code works exactly
the same way with the Circuit Playground Bluefruit. Simply copy the code and follow along with your Circuit
Playground Bluefruit!

�

When you turn the knob of the potentiometer, the wiper rotates left and right, increasing or decreasing the
resistance. This, in turn, changes the analog voltage level that will be read by the Circuit Playground Express
on A1.

�

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 87 of 187

Circuit Playground AnalogIn
Reads the analog voltage level from a 10k potentiometer connected to GND, 3.3V, and pin A1
and prints the results to the serial console.

import time
import board
import analogio

analogin = analogio.AnalogIn(board.A1)

def getVoltage(pin): # helper
 return (pin.value * 3.3) / 65536

while True:
 print("Analog Voltage: %f" % getVoltage(analogin))
 time.sleep(0.1)

Creating an Analog Input

analogin = analogio.AnalogIn(board.A1) creates an object named analogin which is connected to the A1 pad on the

Circuit Playground Express.

GetVoltage Helper

getVoltage(pin) is our little helper program. By default, analog readings will range from 0 (minimum) to 65535

(maximum). This helper will convert the 0-65535 reading from pin.value and convert it a 0-3.3V voltage reading.

Main Loop

The main loop is simple, it will just print out the voltage as a floating point value (the %f indicates to print as floating

point) by calling getVoltage on each of our analog object, in this case the potentiometer.

If you connect to the serial console, you'll see the voltage printed out. Try turning the knob of the potentiometer to see
the voltage change!

You can use many of different kinds of external analog sensors connected to the Analog IO pads, such as
distance sensors, flex sensors, and more!!�

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 88 of 187

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 89 of 187

CircuitPython Servo

In order to use servos, we take advantage of pulseio . Now, in theory, you could just use the raw pulseio calls to set

the frequency to 50 Hz and then set the pulse widths. But we would rather make it a little more elegant and easy!

So, instead we will use adafruit_motor which manages servos for you quite nicely! adafruit_motor is a library so be

sure to grab it from the library bundle if you have not yet (https://adafru.it/zdx)! If you need help installing the library,
check out the CircuitPython Libraries page (https://adafru.it/ABU).

Servos come in two types:

A standard hobby servo - the horn moves 180 degrees (90 degrees in each direction from zero degrees).
A continuous servo - the horn moves in full rotation like a DC motor. Instead of an angle specified, you set a
throttle value with 1.0 being full forward, 0.5 being half forward, 0 being stopped, and -1 being full reverse, with
other values between.

Servo Wiring

The connections for a servo are the same for standard servos and continuous rotation servos.

Connect the servo's brown or black ground wire to ground on the CircuitPython board.

Connect the servo's red power wire to 5V power, USB power is good for a servo or two. For more than that, you'll need
an external battery pack. Do not use 3.3V for powering a servo!

Connect the servo's yellow or white signal wire to the control/data pin, in this case A1 or A2 but you can use any PWM-
capable pin.

For example, to wire a servo to Trinket, connect the

ground wire to GND, the power wire to USB, and the

signal wire to 0.

Remember, A2 on Trinket is labeled "0".

Servos will only work on PWM-capable pins! Check your board details to verify which pins have PWM outputs.�

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 90 of 187

https://github.com/adafruit/Adafruit_CircuitPython_Bundle
file:///welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com/assets/51927

For Gemma, use jumper wire alligator clips to connect

the ground wire to GND, the power wire to VOUT, and

the signal wire to A2.

For Circuit Playground Express and Circuit Playground

Bluefruit, use jumper wire alligator clips to connect the

ground wire to GND, the power wire to VOUT, and the

signal wire to A2.

For boards like Feather M0 Express, ItsyBitsy M0

Express and Metro M0 Express, connect the ground

wire to any GND, the power wire to USB or 5V, and the

signal wire to A2.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 91 of 187

https://learn.adafruit.com/assets/51928
https://learn.adafruit.com/assets/51991
https://learn.adafruit.com/assets/51929

For the Metro M4 Express, ItsyBitsy M4 Express and

the Feather M4 Express, connect the ground wire to

any G or GND, the power wire to USB or 5V, and the

signal wire to A1.

Standard Servo Code

Here's an example that will sweep a servo connected to pin A2 from 0 degrees to 180 degrees (-90 to 90 degrees)
and back:

import time
import board
import pulseio
from adafruit_motor import servo

create a PWMOut object on Pin A2.
pwm = pulseio.PWMOut(board.A2, duty_cycle=2 ** 15, frequency=50)

Create a servo object, my_servo.
my_servo = servo.Servo(pwm)

while True:
 for angle in range(0, 180, 5): # 0 - 180 degrees, 5 degrees at a time.
 my_servo.angle = angle
 time.sleep(0.05)
 for angle in range(180, 0, -5): # 180 - 0 degrees, 5 degrees at a time.
 my_servo.angle = angle
 time.sleep(0.05)

Continuous Servo Code

There are two differences with Continuous Servos vs. Standard Servos:

1. The servo object is created like my_servo = servo.ContinuousServo(pwm) instead of my_servo =
servo.Servo(pwm)

2. Instead of using myservo.angle , you use my_servo.throttle using a throttle value from 1.0 (full on) to 0.0

(stopped) to -1.0 (full reverse). Any number between would be a partial speed forward (positive) or reverse
(negative). This is very similar to standard DC motor control with the adafruit_motor library.

This example runs full forward for 2 seconds, stops for 2 seconds, runs full reverse for 2 seconds, then stops for 4
seconds.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 92 of 187

https://learn.adafruit.com/assets/53104

Continuous Servo Test Program for CircuitPython
import time
import board
import pulseio
from adafruit_motor import servo

create a PWMOut object on Pin A2.
pwm = pulseio.PWMOut(board.A2, frequency=50)

Create a servo object, my_servo.
my_servo = servo.ContinuousServo(pwm)

while True:
 print("forward")
 my_servo.throttle = 1.0
 time.sleep(2.0)
 print("stop")
 my_servo.throttle = 0.0
 time.sleep(2.0)
 print("reverse")
 my_servo.throttle = -1.0
 time.sleep(2.0)
 print("stop")
 my_servo.throttle = 0.0
 time.sleep(4.0)

Pretty simple!

Note that we assume that 0 degrees is 0.5ms and 180 degrees is a pulse width of 2.5ms. That's a bit wider than
the official 1-2ms pulse widths. If you have a servo that has a different range you can initialize the servo object with a

different min_pulse and max_pulse . For example:

my_servo = servo.Servo(pwm, min_pulse = 500, max_pulse = 2500)

For more detailed information on using servos with CircuitPython, check out the CircuitPython section of the servo
guide (https://adafru.it/Bei)!

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 93 of 187

file:///using-servos-with-circuitpython/circuitpython

CircuitPython Audio Out

The Circuit Playground Express has some nice built in audio output capabilities.

There are two ways to get audio output, one is via the small built in speaker. The other is by using alligator clips to
connect a headphone or powered speaker to the A0/AUDIO pin.

The speaker is over here, its small but can make some

loud sounds! You can ENABLE or disable the speaker. If

you disable the speaker, audio will only come out the

A0/AUDIO pin. If you enable the speaker, audio will

come out from both!

If you want to connect a speaker or headphones, use two alligator clips and connect GND to the sleeve of the
headphone, and A0/AUDIO to the tip.

Though the following example uses the Circuit Playground Express to demonstrate, the code works exactly
the same way with the Circuit Playground Bluefruit. Simply copy the code and follow along with your Circuit
Playground Bluefruit!

�

The A0/AUDIO pin cannot drive a speaker directly, please only connect headphones, or powered speakers!�

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 94 of 187

https://learn.adafruit.com/assets/47227

Basic Tones

We can start by making simple tones. We will play sine waves. We first generate a single period of a sine wave in
python, with the math.sin function, and stick it into sine_wave .

Then we enable the speaker by setting the SPEAKER_ENABLE pin to be an output and True .

We can create the audio object with this line that sets the output pin and the sine wave sample object and give it the
sample array

audio = AudioOut(board.SPEAKER)
sine_wave_sample = RawSample(sine_wave)

Finally you can run audio.play() - if you only want to play the sample once, call as is. If you want it to loop the sample,

which we definitely do so its one long tone, pass in loop=True

You can then do whatever you like, the tone will play in the background until you call audio.stop()

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 95 of 187

import time
import array
import math
import board
import digitalio

try:
 from audiocore import RawSample
except ImportError:
 from audioio import RawSample

try:
 from audioio import AudioOut
except ImportError:
 try:
 from audiopwmio import PWMAudioOut as AudioOut
 except ImportError:
 pass # not always supported by every board!

FREQUENCY = 440 # 440 Hz middle 'A'
SAMPLERATE = 8000 # 8000 samples/second, recommended!

Generate one period of sine wav.
length = SAMPLERATE // FREQUENCY
sine_wave = array.array("H", [0] * length)
for i in range(length):
 sine_wave[i] = int(math.sin(math.pi * 2 * i / 18) * (2 ** 15) + 2 ** 15)

Enable the speaker
speaker_enable = digitalio.DigitalInOut(board.SPEAKER_ENABLE)
speaker_enable.direction = digitalio.Direction.OUTPUT
speaker_enable.value = True

audio = AudioOut(board.SPEAKER)
sine_wave_sample = RawSample(sine_wave)

A single sine wave sample is hundredths of a second long. If you set loop=False, it will play
a single instance of the sample (a quick burst of sound) and then silence for the rest of the
duration of the time.sleep(). If loop=True, it will play the single instance of the sample
continuously for the duration of the time.sleep().
audio.play(sine_wave_sample, loop=True) # Play the single sine_wave sample continuously...
time.sleep(1) # for the duration of the sleep (in seconds)
audio.stop() # and then stop.

Playing Audio Files

Tones are lovely but lets play some music! You can drag-and-drop audio files onto the CIRCUITPY drive and then play
them with a Python command

Here's the two files we're going to play:

https://adafru.it/zFK

https://adafru.it/zFK

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 96 of 187

https://cdn-learn.adafruit.com/assets/assets/000/047/231/original/rimshot.wav?1507858005

https://adafru.it/zFL

https://adafru.it/zFL

Click the green buttons to download the wave files, and save them onto your CIRCUITPY drive, alongside your
code.py and lib files

This is the example code we'll be using

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 97 of 187

https://cdn-learn.adafruit.com/assets/assets/000/047/232/original/laugh.wav?1507858014

import board
import digitalio

try:
 from audiocore import WaveFile
except ImportError:
 from audioio import WaveFile

try:
 from audioio import AudioOut
except ImportError:
 try:
 from audiopwmio import PWMAudioOut as AudioOut
 except ImportError:
 pass # not always supported by every board!

Enable the speaker
spkrenable = digitalio.DigitalInOut(board.SPEAKER_ENABLE)
spkrenable.direction = digitalio.Direction.OUTPUT
spkrenable.value = True

Make the 2 input buttons
buttonA = digitalio.DigitalInOut(board.BUTTON_A)
buttonA.direction = digitalio.Direction.INPUT
buttonA.pull = digitalio.Pull.DOWN

buttonB = digitalio.DigitalInOut(board.BUTTON_B)
buttonB.direction = digitalio.Direction.INPUT
buttonB.pull = digitalio.Pull.DOWN

The two files assigned to buttons A & B
audiofiles = ["rimshot.wav", "laugh.wav"]

def play_file(filename):
 print("Playing file: " + filename)
 wave_file = open(filename, "rb")
 with WaveFile(wave_file) as wave:
 with AudioOut(board.SPEAKER) as audio:
 audio.play(wave)
 while audio.playing:
 pass
 print("Finished")

while True:
 if buttonA.value:
 play_file(audiofiles[0])
 if buttonB.value:
 play_file(audiofiles[1])

This example creates two input buttons using the onboard buttons, then has a helper function that will:

1. open a file on the disk drive with wave_file = open(filename, "rb")
2. create the wave file object with with WaveFile(wave_file) as wave:
3. create the audio playback object with with AudioOut(board.SPEAKER) as audio:
4. and finally play it until its done:

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 98 of 187

audio.play(wave)
while audio.playing:
 pass

 Upload the code then try pressing the two buttons one at a time to create your own laugh track!

If you want to use your own sound files, you can! Record, sample, remix, or simply download files from a sound file
sight, such as freesample.org. Then, to make sure you have the files converted to the proper specifications, check out
this guide here (https://adafru.it/BvU) that'll show you how! Spoiler alert: you'll need to make a small, 22Khz (or lower),
16 bit PCM, mono .wav file!

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 99 of 187

https://learn.adafruit.com/microcontroller-compatible-audio-file-conversion

CircuitPython Cap Touch

This quick-start example shows how you can read the capacitive touch sensors built into on seven of the Circuit
Playground Express pads (pad A0/Audio is not a capacitive touch pad).

Copy and paste the code block into code.py using your favorite code editor, and save the file, to run the demo

Though the following example uses the Circuit Playground Express to demonstrate, the code works exactly
the same way with the Circuit Playground Bluefruit. Simply copy the code and follow along with your Circuit
Playground Bluefruit!

�

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 100 of 187

Circuit Playground Capacitive Touch

import time
import board
import touchio

touch_A1 = touchio.TouchIn(board.A1)
touch_A2 = touchio.TouchIn(board.A2)
touch_A3 = touchio.TouchIn(board.A3)
touch_A4 = touchio.TouchIn(board.A4)
touch_A5 = touchio.TouchIn(board.A5)
touch_A6 = touchio.TouchIn(board.A6)
touch_TX = touchio.TouchIn(board.TX)

while True:
 if touch_A1.value:
 print("A1 touched!")
 if touch_A2.value:
 print("A2 touched!")
 if touch_A3.value:
 print("A3 touched!")
 if touch_A4.value:
 print("A4 touched!")
 if touch_A5.value:
 print("A5 touched!")
 if touch_A6.value:
 print("A6 touched!")
 if touch_TX.value:
 print("TX touched!")

 time.sleep(0.01)

You can open up the serial console, then touch each touch pad to see the touches detected and printed out.

Creating an capacitive touch input

Pads A1 - A6 and TX can be used as capacitive TouchIn devices:

touch_A1 = touchio.TouchIn(board.A1)
touch_A2 = touchio.TouchIn(board.A2)
touch_A3 = touchio.TouchIn(board.A3)
touch_A4 = touchio.TouchIn(board.A4)
touch_A5 = touchio.TouchIn(board.A5)
touch_A6 = touchio.TouchIn(board.A6)
touch_TX = touchio.TouchIn(board.TX)

This code creates seven objects, one connected to each of the cap touch pads.

Main Loop

The main loop checks each sensor one after the other, to determine if it has been touched. If touch_A1.value returns

True, that means that that pad, A1 , detected a touch. For each pad, if it has been touched, a message will print.

A small sleep delay is added at the end so the loop doesn't run too fast. You may want to change the delay from 0.1
seconds to 0 seconds to slow it down or increase it to speed it up.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 101 of 187

Note that no extra hardware is required, you can touch the pads directly, but you may want to attach alligator clips or
foil tape to metallic or conductive objects. Try silverware, fruit or other food, liquid, aluminum foil, and items around
your desk!

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 102 of 187

You may need to restart your code/board after changing the attached item because the capacitive touch code
'calibrates' based on what it sees when it first starts up. So if you get too many touch-signals or not enough, hit that
reset button!

Capacitive Touch and the Audio Pin on Circuit Playground Bluefruit

On the Circuit Playground Bluefruit, if you touch any of the touch pads at the same time as touching the Audio pin, you
may hear a clicking or buzzing coming from the speaker. This is due to how the capacitive touch on the Bluefruit
works. If you run into this and wish to avoid it, you can turn the speaker off using code by including the following in
your code.py:

Copper Foil Tape with Conductive Adhesive - 6mm x 15
meter roll

OUT OF STOCK

Out Of Stock

Copper Foil Tape with Conductive Adhesive - 25mm x 15
meter roll

$19.95
IN STOCK

Add To Cart

Small Alligator Clip Test Lead (set of 12)

$3.95
IN STOCK

Add To Cart

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 103 of 187

https://www.adafruit.com/product/1128
https://www.adafruit.com/product/1128
https://www.adafruit.com/product/1127
https://www.adafruit.com/product/1127
https://www.adafruit.com/product/1008
https://www.adafruit.com/product/1008

import digitalio

speaker = digitalio.DigitalInOut(board.SPEAKER_ENABLE)
speaker.switch_to_output(value=False)

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 104 of 187

CircuitPython NeoPixel

NeoPixels are a revolutionary and ultra-popular way to add lights and color to your project. These stranded RGB lights
have the controller inside the LED, so you just push the RGB data and the LEDs do all the work for you! They're a
perfect match for CircuitPython.

You can drive 300 pixels with brightness control (e.g. setting brightness=0.2 to set it to 20% brightness) and 1000

pixels without (e.g. not setting brightness at all or setting brightness=1.0 in object creation). That's because to

adjust the brightness we have to dynamically re-create the datastream each write.

Here's an example with a lot of different visual effects you can check out. You'll need the neopixel.mpy library file if you
don't have it yet! (https://adafru.it/ENC)

Circuit Playground NeoPixel
import time
import board
import neopixel

pixels = neopixel.NeoPixel(board.NEOPIXEL, 10, brightness=0.2, auto_write=False)

choose which demos to play
1 means play, 0 means don't!
color_chase_demo = 1
flash_demo = 1
rainbow_demo = 1
rainbow_cycle_demo = 1

Though the following example uses the Circuit Playground Express to demonstrate, the code works exactly
the same way with the Circuit Playground Bluefruit. Simply copy the code and follow along with your Circuit
Playground Bluefruit!

�

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 105 of 187

https://circuitpython.org/libraries

rainbow_cycle_demo = 1

def wheel(pos):
 # Input a value 0 to 255 to get a color value.
 # The colours are a transition r - g - b - back to r.
 if pos < 0 or pos > 255:
 return (0, 0, 0)
 if pos < 85:
 return (255 - pos * 3, pos * 3, 0)
 if pos < 170:
 pos -= 85
 return (0, 255 - pos * 3, pos * 3)
 pos -= 170
 return (pos * 3, 0, 255 - pos * 3)

def color_chase(color, wait):
 for i in range(10):
 pixels[i] = color
 time.sleep(wait)
 pixels.show()
 time.sleep(0.5)

def rainbow_cycle(wait):
 for j in range(255):
 for i in range(10):
 rc_index = (i * 256 // 10) + j * 5
 pixels[i] = wheel(rc_index & 255)
 pixels.show()
 time.sleep(wait)

def rainbow(wait):
 for j in range(255):
 for i in range(len(pixels)):
 idx = int(i + j)
 pixels[i] = wheel(idx & 255)
 pixels.show()
 time.sleep(wait)

RED = (255, 0, 0)
YELLOW = (255, 150, 0)
GREEN = (0, 255, 0)
CYAN = (0, 255, 255)
BLUE = (0, 0, 255)
PURPLE = (180, 0, 255)
WHITE = (255, 255, 255)
OFF = (0, 0, 0)

while True:
 if color_chase_demo:
 color_chase(RED, 0.1) # Increase the number to slow down the color chase
 color_chase(YELLOW, 0.1)
 color_chase(GREEN, 0.1)
 color_chase(CYAN, 0.1)
 color_chase(BLUE, 0.1)
 color_chase(PURPLE, 0.1)
 color_chase(OFF, 0.1)

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 106 of 187

 color_chase(OFF, 0.1)

 if flash_demo:
 pixels.fill(RED)
 pixels.show()
 # Increase or decrease to change the speed of the solid color change.
 time.sleep(1)
 pixels.fill(GREEN)
 pixels.show()
 time.sleep(1)
 pixels.fill(BLUE)
 pixels.show()
 time.sleep(1)
 pixels.fill(WHITE)
 pixels.show()
 time.sleep(1)

 if rainbow_cycle_demo:
 rainbow_cycle(0.05) # Increase the number to slow down the rainbow.

 if rainbow_demo:
 rainbow(0.05) # Increase the number to slow down the rainbow.

The NeoPixel object's argument list requires the pin you'll use (any pin can be used) and the number of pixels. There
are two optional arguments, brightness (range from 0 off to 1.0 full brightness) and auto_write . auto_write defaults

to True when not set. When auto_write is set to True , every change is immediately written to the strip of pixels,

which is easier to use but way slower. if you set auto_write=False then you will have to call pixels.show() when you

want to actually write color data out.

You can easily set colors by indexing into the location pixels[n] = (red, green, blue) . For example, pixels[0] = (100, 0,
0) will set the first pixel to a medium-brightness red, and pixels[2] = (0, 255, 0) will set the third pixel to bright green.

Then, if you have auto_write=False don't forget to call pixels.show() !

For powering the pixels from the board, the 3.3V regulator output can handle about 500mA peak which is about 50
pixels with 'average' use. If you want really bright lights and a lot of pixels, we recommend powering direct from the
power source. On the Circuit Playground Express this is the Vout pad - that pad has direct power from USB or BAT
(battery), depending on which is higher voltage.

You aren't limited to the on-board NeoPixels -- externally connected NeoPixels can be driven by any Digital
IO pin.�

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 107 of 187

Verify the wiring on your strip or device - plugging into the 'DOUT' side is a common mistake! Wire up NeoPixels only
while the Circuit Playground Express is not on, to avoid possible damage!

If the power to the NeoPixels is > 5.5V you may have some difficulty driving some strips, in which case you may need
to lower the voltage to 4.5-5V or use a level shifter

We have a ton more information on general purpose NeoPixel know-how at our NeoPixel UberGuide
https://learn.adafruit.com/adafruit-neopixel-uberguide�

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 108 of 187

https://learn.adafruit.com/adafruit-neopixel-uberguide

CircuitPython DotStar

DotStars use two wires, unlike NeoPixel's one wire. They're very similar but you can write to DotStars much faster with
hardware SPI and they have a faster PWM cycle so they are better for light painting.

Any pins can be used but if the two pins can form a hardware SPI port, the library will automatically switch over to
hardware SPI. If you use hardware SPI then you'll get 4 MHz clock rate (that would mean updating a 64 pixel strand in
about 500uS - that's 0.0005 seconds). If you use non-hardware SPI pins you'll drop down to about 3KHz, 1000 times as
slow!

You can drive 300 DotStar LEDs with brightness control (set brightness=1.0 in object creation) and 1000 LEDs

without. That's because to adjust the brightness we have to dynamically recreate the data-stream each write.

You'll need the adafruit_dotstar.mpy library if you don't already have it in your /lib folder! You can get it from the
CircuitPython Library Bundle (https://adafru.it/y8E). If you need help installing the library, check out the CircuitPython
Libraries page (https://adafru.it/ABU).

Wire It Up

You'll need to solder up your DotStars first. Verify your connection is on the DATA INPUT or DI and CLOCK INPUT or CI
side. Plugging into the DATA OUT/DO or CLOCK OUT/CO side is a common mistake! The connections are labeled and
some formats have arrows to indicate the direction the data must flow. Always verify your wiring with a visual
inspection, as the order of the connections can differ from strip to strip!

For powering the pixels from the board, the 3.3V regulator output can handle about 500mA peak which is about 50
pixels with 'average' use. If you want really bright lights and a lot of pixels, we recommend powering direct from an
external power source.

On Gemma M0 and Circuit Playground Express this is the Vout pad - that pad has direct power from USB or the
battery, depending on which is higher voltage.
On Trinket M0, Feather M0 Express, Feather M4 Express, ItsyBitsy M0 Express and ItsyBitsy M4 Express the USB
or BAT pins will give you direct power from the USB port or battery.
On Metro M0 Express and Metro M4 Express, use the 5V pin regardless of whether it's powered via USB or the
DC jack.

If the power to the DotStars is greater than 5.5V you may have some difficulty driving some strips, in which case you
may need to lower the voltage to 4.5-5V or use a level shifter.

Do not use the VIN pin directly on Metro M0 Express or Metro M4 Express! The voltage can reach 9V and this
can destroy your DotStars!�

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 109 of 187

https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/latest
file:///welcome-to-circuitpython/circuitpython-libraries

The Code

This example includes multiple visual effects. Copy and paste the code into code.py using your favorite editor, and
save the file.

CircuitPython demo - Dotstar
import time
import adafruit_dotstar
import board

num_pixels = 30
pixels = adafruit_dotstar.DotStar(board.A1, board.A2, num_pixels, brightness=0.1, auto_write=False)

def wheel(pos):
 # Input a value 0 to 255 to get a color value.
 # The colours are a transition r - g - b - back to r.
 if pos < 0 or pos > 255:
 return (0, 0, 0)
 if pos < 85:
 return (255 - pos * 3, pos * 3, 0)
 if pos < 170:
 pos -= 85
 return (0, 255 - pos * 3, pos * 3)
 pos -= 170
 return (pos * 3, 0, 255 - pos * 3)

def color_fill(color, wait):
 pixels.fill(color)
 pixels.show()
 time.sleep(wait)

def slice_alternating(wait):
 pixels[::2] = [RED] * (num_pixels // 2)
 pixels.show()
 time.sleep(wait)
 pixels[1::2] = [ORANGE] * (num_pixels // 2)
 pixels.show()

Note that the wire ordering on your DotStar strip or shape may not exactly match the diagram above. Check
the markings to verify which pin is DIN, CIN, 5V and GND�

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 110 of 187

 pixels.show()
 time.sleep(wait)
 pixels[::2] = [YELLOW] * (num_pixels // 2)
 pixels.show()
 time.sleep(wait)
 pixels[1::2] = [GREEN] * (num_pixels // 2)
 pixels.show()
 time.sleep(wait)
 pixels[::2] = [TEAL] * (num_pixels // 2)
 pixels.show()
 time.sleep(wait)
 pixels[1::2] = [CYAN] * (num_pixels // 2)
 pixels.show()
 time.sleep(wait)
 pixels[::2] = [BLUE] * (num_pixels // 2)
 pixels.show()
 time.sleep(wait)
 pixels[1::2] = [PURPLE] * (num_pixels // 2)
 pixels.show()
 time.sleep(wait)
 pixels[::2] = [MAGENTA] * (num_pixels // 2)
 pixels.show()
 time.sleep(wait)
 pixels[1::2] = [WHITE] * (num_pixels // 2)
 pixels.show()
 time.sleep(wait)

def slice_rainbow(wait):
 pixels[::6] = [RED] * (num_pixels // 6)
 pixels.show()
 time.sleep(wait)
 pixels[1::6] = [ORANGE] * (num_pixels // 6)
 pixels.show()
 time.sleep(wait)
 pixels[2::6] = [YELLOW] * (num_pixels // 6)
 pixels.show()
 time.sleep(wait)
 pixels[3::6] = [GREEN] * (num_pixels // 6)
 pixels.show()
 time.sleep(wait)
 pixels[4::6] = [BLUE] * (num_pixels // 6)
 pixels.show()
 time.sleep(wait)
 pixels[5::6] = [PURPLE] * (num_pixels // 6)
 pixels.show()
 time.sleep(wait)

def rainbow_cycle(wait):
 for j in range(255):
 for i in range(num_pixels):
 rc_index = (i * 256 // num_pixels) + j
 pixels[i] = wheel(rc_index & 255)
 pixels.show()
 time.sleep(wait)

RED = (255, 0, 0)
YELLOW = (255, 150, 0)

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 111 of 187

ORANGE = (255, 40, 0)
GREEN = (0, 255, 0)
TEAL = (0, 255, 120)
CYAN = (0, 255, 255)
BLUE = (0, 0, 255)
PURPLE = (180, 0, 255)
MAGENTA = (255, 0, 20)
WHITE = (255, 255, 255)

while True:
 # Change this number to change how long it stays on each solid color.
 color_fill(RED, 0.5)
 color_fill(YELLOW, 0.5)
 color_fill(ORANGE, 0.5)
 color_fill(GREEN, 0.5)
 color_fill(TEAL, 0.5)
 color_fill(CYAN, 0.5)
 color_fill(BLUE, 0.5)
 color_fill(PURPLE, 0.5)
 color_fill(MAGENTA, 0.5)
 color_fill(WHITE, 0.5)

 # Increase or decrease this to speed up or slow down the animation.
 slice_alternating(0.1)

 color_fill(WHITE, 0.5)

 # Increase or decrease this to speed up or slow down the animation.
 slice_rainbow(0.1)

 time.sleep(0.5)

 # Increase this number to slow down the rainbow animation.
 rainbow_cycle(0)

Create the LED

The first thing we'll do is create the LED object. The DotStar object has three required arguments and two optional
arguments. You are required to set the pin you're using for data, set the pin you'll be using for clock, and provide the
number of pixels you intend to use. You can optionally set brightness and auto_write .

DotStars can be driven by any two pins. We've chosen A1 for clock and A2 for data. To set the pins, include the pin
names at the beginning of the object creation, in this case board.A1 and board.A2 .

To provide the number of pixels, assign the variable num_pixels to the number of pixels you'd like to use. In this

example, we're using a strip of 72 .

We've chosen to set brightness=0.1 , or 10%.

By default, auto_write=True , meaning any changes you make to your pixels will be sent automatically. Since True is

the default, if you use that setting, you don't need to include it in your LED object at all. We've chosen to

We've chosen pins A1 and A2, but these are not SPI pins on all boards. DotStars respond faster when using
hardware SPI!�

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 112 of 187

set auto_write=False . If you set auto_write=False , you must include pixels.show() each time you'd like to send data

to your pixels. This makes your code more complicated, but it can make your LED animations faster!

DotStar Helpers

We've included a few helper functions to create the super fun visual effects found in this code.

First is wheel() which we just learned with the Internal RGB LED (https://adafru.it/Bel). Then we have color_fill() which

requires you to provide a color and the length of time you'd like it to be displayed. Next, are slice_alternating() ,

slice_rainbow() , and rainbow_cycle() which require you to provide the amount of time in seconds you'd between

each step of the animation.

Last, we've included a list of variables for our colors. This makes it much easier if to reuse the colors anywhere in the
code, as well as add more colors for use in multiple places. Assigning and using RGB colors is explained in this section
of the CircuitPython Internal RGB LED page (https://adafru.it/Bel).

The two slice helpers utilise a nifty feature of the DotStar library that allows us to use math to light up LEDs in repeating
patterns. slice_alternating() first lights up the even number LEDs and then the odd number LEDs and repeats this

back and forth. slice_rainbow() lights up every sixth LED with one of the six rainbow colors until the strip is filled. Both

use our handy color variables. This slice code only works when the total number of LEDs is divisible by the slice size, in
our case 2 and 6. DotStars come in strips of 30, 60, 72, and 144, all of which are divisible by 2 and 6. In the event that
you cut them into different sized strips, the code in this example may not work without modification. However, as long
as you provide a total number of LEDs that is divisible by the slices, the code will work.

Main Loop

Our main loop begins by calling color_fill() once for each color on our list and sets each to hold for 0.5 seconds. You

can change this number to change how fast each color is displayed. Next, we call slice_alternating(0.1) , which means

there's a 0.1 second delay between each change in the animation. Then, we fill the strip white to create a clean
backdrop for the rainbow to display. Then, we call slice_rainbow(0.1) , for a 0.1 second delay in the animation. Last we

call rainbow_cycle(0) , which means it's as fast as it can possibly be. Increase or decrease either of these numbers to

speed up or slow down the animations!

Note that the longer your strip of LEDs is, the longer it will take for the animations to complete.

Is it SPI?

We explained at the beginning of this section that the LEDs respond faster if you're using hardware SPI. On some of
the boards, there are HW SPI pins directly available in the form of MOSI and SCK. However, hardware SPI is available
on more than just those pins. But, how can you figure out which? Easy! We wrote a handy script.

We chose pins A1 and A2 for our example code. To see if these are hardware SPI on the board you're using, copy and
paste the code into code.py using your favorite editor, and save the file. Then connect to the serial console to see the
results.

To check if other pin combinations have hardware SPI, change the pin names on the line reading: if
is_hardware_SPI(board.A1, board.A2): to the pins you want to use. Then, check the results in the serial console. Super

simple!

We have a ton more information on general purpose DotStar know-how at our DotStar UberGuide
https://learn.adafruit.com/adafruit-dotstar-leds�

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 113 of 187

file:///circuitpython-essentials/circuitpython-internal-rgb-led
file:///circuitpython-essentials/circuitpython-internal-rgb-led#main-loop
https://learn.adafruit.com/adafruit-dotstar-leds

import board
import busio

def is_hardware_spi(clock_pin, data_pin):
 try:
 p = busio.SPI(clock_pin, data_pin)
 p.deinit()
 return True
 except ValueError:
 return False

Provide the two pins you intend to use.
if is_hardware_spi(board.A1, board.A2):
 print("This pin combination is hardware SPI!")
else:
 print("This pin combination isn't hardware SPI.")

Read the Docs

For a more in depth look at what dotstar can do, check out DotStar on Read the Docs (https://adafru.it/C4d).

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 114 of 187

https://circuitpython.readthedocs.io/projects/dotstar/en/latest/

CircuitPython UART Serial

In addition to the USB-serial connection you use for the REPL, there is also a hardware UART you can use. This is
handy to talk to UART devices like GPSs, some sensors, or other microcontrollers!

This quick-start example shows how you can create a UART device for communicating with hardware serial devices.

To use this example, you'll need something to generate the UART data. We've used a GPS! Note that the GPS will give
you UART data without getting a fix on your location. You can use this example right from your desk! You'll have data
to read, it simply won't include your actual location.

You'll need the adafruit_bus_device library folder if you don't already have it in your /lib folder! You can get it from the
CircuitPython Library Bundle (https://adafru.it/y8E). If you need help installing the library, check out the CircuitPython
Libraries page (https://adafru.it/ABU).

Copy and paste the code into code.py using your favorite editor, and save the file.

CircuitPython Demo - USB/Serial echo

import board
import busio
import digitalio

led = digitalio.DigitalInOut(board.D13)
led.direction = digitalio.Direction.OUTPUT

uart = busio.UART(board.TX, board.RX, baudrate=9600)

while True:
 data = uart.read(32) # read up to 32 bytes
 # print(data) # this is a bytearray type

 if data is not None:
 led.value = True

 # convert bytearray to string
 data_string = ''.join([chr(b) for b in data])
 print(data_string, end="")

 led.value = False

The Code

First we create the UART object. We provide the pins we'd like to use, board.TX and board.RX , and we set the

baudrate=9600 . While these pins are labeled on most of the boards, be aware that RX and TX are not labeled on

Gemma, and are labeled on the bottom of Trinket. See the diagrams below for help with finding the correct pins on
your board.

Once the object is created you read data in with read(numbytes) where you can specify the max number of bytes. It

will return a byte array type object if anything was received already. Note it will always return immediately because
there is an internal buffer! So read as much data as you can 'digest'.

If there is no data available, read() will return None , so check for that before continuing.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 115 of 187

https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/latest
file:///welcome-to-circuitpython/circuitpython-libraries

The data that is returned is in a byte array, if you want to convert it to a string, you can use this handy line of code
which will run chr() on each byte:

datastr = ''.join([chr(b) for b in data]) # convert bytearray to string

Your results will look something like this:

Wire It Up

You'll need a couple of things to connect the GPS to your board.

For Gemma M0 and Circuit Playground Express, you can use use alligator clips to connect to the Flora Ultimate GPS
Module.

For Trinket M0, Feather M0 Express, Metro M0 Express and ItsyBitsy M0 Express, you'll need a breadboard and
jumper wires to connect to the Ultimate GPS Breakout.

We've included diagrams show you how to connect the GPS to your board. In these diagrams, the wire colors match
the same pins on each board.

The black wire connects between the ground pins.
The red wire connects between the power pins on the GPS and your board.
The blue wire connects from TX on the GPS to RX on your board.
The white wire connects from RX on the GPS to TX on your board.

For more information about the data you're reading and the Ultimate GPS, check out the Ultimate GPS guide:
https://learn.adafruit.com/adafruit-ultimate-gps�

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 116 of 187

https://learn.adafruit.com/adafruit-ultimate-gps

Check out the list below for a diagram of your specific board!

Circuit Playground Express and Circuit Playground

Bluefruit

Connect 3.3v on your CPX to 3.3v on your GPS.

Connect GND on your CPX to GND on your GPS.

Connect RX/A6 on your CPX to TX on your GPS.

Connect TX/A7 on your CPX to RX on your GPS.

Trinket M0

Connect USB on the Trinket to VIN on the GPS.

Connect Gnd on the Trinket to GND on the GPS.

Connect D3 on the Trinket to TX on the GPS.

Connect D4 on the Trinket to RX on the GPS.

Watch out! A common mixup with UART serial is that RX on one board connects to TX on the other! However,
sometimes boards have RX labeled TX and vice versa. So, you'll want to start with RX connected to TX, but if
that doesn't work, try the other way around!

�

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 117 of 187

https://learn.adafruit.com/assets/52309
https://learn.adafruit.com/assets/52310

Gemma M0

Connect 3vo on the Gemma to 3.3v on the GPS.

Connect GND on the Gemma to GND on the GPS.

Connect A1/D2 on the Gemma to TX on the GPS.

Connect A2/D0 on the Gemma to RX on the GPS.

Feather M0 Express and Feather M4 Express

Connect USB on the Feather to VIN on the GPS.

Connect GND on the Feather to GND on the GPS.

Connect RX on the Feather to TX on the GPS.

Connect TX on the Feather to RX on the GPS.

ItsyBitsy M0 Express and ItsyBitsy M4 Express

Connect USB on the ItsyBitsy to VIN on the GPS

Connect G on the ItsyBitsy to GND on the GPS.

Connect RX/0 on the ItsyBitsy to TX on the GPS.

Connect TX/1 on the ItsyBitsy to RX on the GPS.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 118 of 187

https://learn.adafruit.com/assets/52311
https://learn.adafruit.com/assets/52312
https://learn.adafruit.com/assets/52324

Metro M0 Express and Metro M4 Express

Connect 5V on the Metro to VIN on the GPS.

Connect GND on the Metro to GND on the GPS.

Connect RX/D0 on the Metro to TX on the GPS.

Connect TX/D1 on the Metro to RX on the GPS.

Where's my UART?

On the SAMD21, we have the flexibility of using a wide range of pins for UART. Compare this to some chips like the
ESP8266 with fixed UART pins. The good news is you can use many but not all pins. Given the large number of SAMD
boards we have, its impossible to guarantee anything other than the labeled 'TX' and 'RX'. So, if you want some other
setup, or multiple UARTs, how will you find those pins? Easy! We've written a handy script.

All you need to do is copy this file to your board, rename it code.py, connect to the serial console and check out the
output! The results print out a nice handy list of RX and TX pin pairs that you can use.

These are the results from a Trinket M0, your output may vary and it might be very long. For more details about UARTs
and SERCOMs check out our detailed guide here (https://adafru.it/Ben)

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 119 of 187

https://learn.adafruit.com/assets/52328
file:///using-atsamd21-sercom-to-add-more-spi-i2c-serial-ports

import board
import busio
from microcontroller import Pin

def is_hardware_uart(tx, rx):
 try:
 p = busio.UART(tx, rx)
 p.deinit()
 return True
 except ValueError:
 return False

def get_unique_pins():
 exclude = ['NEOPIXEL', 'APA102_MOSI', 'APA102_SCK']
 pins = [pin for pin in [
 getattr(board, p) for p in dir(board) if p not in exclude]
 if isinstance(pin, Pin)]
 unique = []
 for p in pins:
 if p not in unique:
 unique.append(p)
 return unique

for tx_pin in get_unique_pins():
 for rx_pin in get_unique_pins():
 if rx_pin is tx_pin:
 continue
 else:
 if is_hardware_uart(tx_pin, rx_pin):
 print("RX pin:", rx_pin, "\t TX pin:", tx_pin)
 else:
 pass

Trinket M0: Create UART before I2C

On the Trinket M0 (only), if you are using both busio.UART and busio.I2C , you must create the UART object first, e.g.:

>>> import board,busio
>>> uart = busio.UART(board.TX, board.RX)
>>> i2c = busio.I2C(board.SCL, board.SDA)

Creating busio.I2C first does not work:

>>> import board,busio
>>> i2c = busio.I2C(board.SCL, board.SDA)
>>> uart = busio.UART(board.TX, board.RX)
Traceback (most recent call last):
File "", line 1, in
ValueError: Invalid pins

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 120 of 187

CircuitPython I2C

I2C is a 2-wire protocol for communicating with simple sensors and devices, meaning it uses two connections for
transmitting and receiving data. There are many I2C devices available and they're really easy to use with CircuitPython.
We have libraries available for many I2C devices in the library bundle (https://adafru.it/uap). (If you don't see the sensor
you're looking for, keep checking back, more are being written all the time!)

In this section, we're going to do is learn how to scan the I2C bus for all connected devices. Then we're going to learn
how to interact with an I2C device.

We'll be using the TSL2561, a common, low-cost light sensor. While the exact code we're running is specific to the
TSL2561 the overall process is the same for just about any I2C sensor or device.

You'll need the adafruit_tsl2561.mpy library and adafruit_bus_device library folder if you don't already have it in your
/lib folder! You can get it from the CircuitPython Library Bundle (https://adafru.it/y8E). If you need help installing the
library, check out the CircuitPython Libraries page (https://adafru.it/ABU).

These examples will use the TSL2561 lux sensor Flora and breakout. The first thing you'll want to do is get the sensor
connected so your board has I2C to talk to.

Wire It Up

You'll need a couple of things to connect the TSL2561 to your board.

For Gemma M0 and Circuit Playground Express, you can use use alligator clips to connect to the Flora TSL2561 Lux
Sensor.

For Trinket M0, Feather M0 Express, Metro M0 Express and ItsyBitsy M0 Express, you'll need a breadboard and
jumper wires to connect to the TSL2561 Lux Sensor breakout board.

We've included diagrams show you how to connect the TSL2561 to your board. In these diagrams, the wire colors
match the same pins on each board.

The black wire connects between the ground pins.
The red wire connects between the power pins on the TSL2561 and your board.
The yellow wire connects from SCL on the TSL2561 to SCL on your board.
The blue wire connects from SDA on the TSL2561 to SDA on your board.

Check out the list below for a diagram of your specific board!

Be aware that the Adafruit microcontroller boards do not have I2C pullup resistors built in! All of the Adafruit
breakouts do, but if you're building your own board or using a non-Adafruit breakout, you must add 2.2K-10K
ohm pullups on both SDA and SCL to the 3.3V.

�

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 121 of 187

https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/latest
file:///welcome-to-circuitpython/circuitpython-libraries

Circuit Playground Express and Circuit Playground

Bluefruit

Connect 3.3v on your CPX to 3.3v on your

TSL2561.

Connect GND on your CPX to GND on your

TSL2561.

Connect SCL/A4 on your CPX to SCL on your

TSL2561.

Connect SDL/A5 on your CPX to SDA on your

TSL2561.

Trinket M0

Connect USB on the Trinket to VIN on the

TSL2561.

Connect Gnd on the Trinket to GND on the

TSL2561.

Connect D2 on the Trinket to SCL on the TSL2561.

Connect D0 on the Trinket to SDA on the

TSL2561.

Gemma M0

Connect 3vo on the Gemma to 3V on the

TSL2561.

Connect GND on the Gemma to GND on the

TSL2561.

Connect A1/D2 on the Gemma to SCL on the

TSL2561.

Connect A2/D0 on the Gemma to SDA on the

TSL2561.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 122 of 187

https://learn.adafruit.com/assets/52413
https://learn.adafruit.com/assets/52414
https://learn.adafruit.com/assets/52415

Feather M0 Express and Feather M4 Express

Connect USB on the Feather to VIN on the

TSL2561.

Connect GND on the Feather to GND on the

TSL2561.

Connect SCL on the Feather to SCL on the

TSL2561.

Connect SDA on the Feather to SDA on the

TSL2561.

ItsyBitsy M0 Express and ItsyBitsy M4 Express

Connect USB on the ItsyBitsy to VIN on the

TSL2561

Connect G on the ItsyBitsy to GND on the

TSL2561.

Connect SCL on the ItsyBitsy to SCL on the

TSL2561.

Connect SDA on the ItsyBitsy to SDA on the

TSL2561.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 123 of 187

https://learn.adafruit.com/assets/57598
https://learn.adafruit.com/assets/52417

Metro M0 Express and Metro M4 Express

Connect 5V on the Metro to VIN on the TSL2561.

Connect GND on the Metro to GND on the

TSL2561.

Connect SCL on the Metro to SCL on the TSL2561.

Connect SDA on the Metro to SDA on the

TSL2561.

Find Your Sensor

The first thing you'll want to do after getting the sensor wired up, is make sure it's wired correctly. We're going to do an
I2C scan to see if the board is detected, and if it is, print out its I2C address.

Copy and paste the code into code.py using your favorite editor, and save the file.

CircuitPython demo - I2C scan

import time

import board
import busio

i2c = busio.I2C(board.SCL, board.SDA)

while not i2c.try_lock():
 pass

while True:
 print("I2C addresses found:", [hex(device_address)
 for device_address in i2c.scan()])
 time.sleep(2)

First we create the i2c object and provide the I2C pins, board.SCL and board.SDA .

To be able to scan it, we need to lock the I2C down so the only thing accessing it is the code. So next we include a
loop that waits until I2C is locked and then continues on to the scan function.

Last, we have the loop that runs the actual scan, i2c_scan() . Because I2C typically refers to addresses in hex form,

we've included this bit of code that formats the results into hex format: [hex(device_address) for device_address in

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 124 of 187

https://learn.adafruit.com/assets/52419

i2c.scan()] .

Open the serial console to see the results! The code prints out an array of addresses. We've connected the TSL2561
which has a 7-bit I2C address of 0x39. The result for this sensor is I2C addresses found: ['0x39'] . If no addresses are

returned, refer back to the wiring diagrams to make sure you've wired up your sensor correctly.

I2C Sensor Data

Now we know for certain that our sensor is connected and ready to go. Let's find out how to get the data from our
sensor!

Copy and paste the code into code.py using your favorite editor, and save the file.

CircuitPython Demo - I2C sensor

import time

import adafruit_tsl2561
import board
import busio

i2c = busio.I2C(board.SCL, board.SDA)

Lock the I2C device before we try to scan
while not i2c.try_lock():
 pass
Print the addresses found once
print("I2C addresses found:", [hex(device_address)
 for device_address in i2c.scan()])

Unlock I2C now that we're done scanning.
i2c.unlock()

Create library object on our I2C port
tsl2561 = adafruit_tsl2561.TSL2561(i2c)

Use the object to print the sensor readings
while True:
 print("Lux:", tsl2561.lux)
 time.sleep(1.0)

This code begins the same way as the scan code. We've included the scan code so you have verification that your
sensor is wired up correctly and is detected. It prints the address once. After the scan, we unlock I2C with
i2c_unlock() so we can use the sensor for data.

We create our sensor object using the sensor library. We call it tsl2561 and provide it the i2c object.

Then we have a simple loop that prints out the lux reading using the sensor object we created. We add a
time.sleep(1.0) , so it only prints once per second. Connect to the serial console to see the results. Try shining a light

on it to see the results change!

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 125 of 187

Where's my I2C?

On the SAMD21, SAMD51 and nRF52840, we have the flexibility of using a wide range of pins for I2C. On the
nRF52840, any pin can be used for I2C! Some chips, like the ESP8266, require using bitbangio, but can also use any
pins for I2C. There's some other chips that may have fixed I2C pin.

The good news is you can use many but not all pins. Given the large number of SAMD boards we have, its impossible
to guarantee anything other than the labeled 'SDA' and 'SCL'. So, if you want some other setup, or multiple I2C
interfaces, how will you find those pins? Easy! We've written a handy script.

All you need to do is copy this file to your board, rename it code.py, connect to the serial console and check out the
output! The results print out a nice handy list of SCL and SDA pin pairs that you can use.

These are the results from an ItsyBitsy M0 Express. Your output may vary and it might be very long. For more details
about I2C and SERCOMs, check out our detailed guide here (https://adafru.it/Ben).

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 126 of 187

file:///using-atsamd21-sercom-to-add-more-spi-i2c-serial-ports

import board
import busio
from microcontroller import Pin

def is_hardware_I2C(scl, sda):
 try:
 p = busio.I2C(scl, sda)
 p.deinit()
 return True
 except ValueError:
 return False
 except RuntimeError:
 return True

def get_unique_pins():
 exclude = ['NEOPIXEL', 'APA102_MOSI', 'APA102_SCK']
 pins = [pin for pin in [
 getattr(board, p) for p in dir(board) if p not in exclude]
 if isinstance(pin, Pin)]
 unique = []
 for p in pins:
 if p not in unique:
 unique.append(p)
 return unique

for scl_pin in get_unique_pins():
 for sda_pin in get_unique_pins():
 if scl_pin is sda_pin:
 continue
 else:
 if is_hardware_I2C(scl_pin, sda_pin):
 print("SCL pin:", scl_pin, "\t SDA pin:", sda_pin)
 else:
 pass

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 127 of 187

CircuitPython HID
Keyboard

One of the things we baked into CircuitPython is 'HID' control - Keyboard and Mouse capabilities. This means a Circuit
Playground Express can act like a keyboard device and press keys, or a mouse and have it move the mouse around
and press buttons. This is really handy because even if you cannot adapt your software to work with hardware, there's
almost always a keyboard interface - so if you want to have a capacitive touch interface for a game, say, then keyboard
emulation can often get you going really fast!

You'll need to copy the adafruit_hid module from the library bundle which include Keyboard, Keycode and Mouse
support (https://adafru.it/ENC)

Then try running this example code which will set the Circuit Playground Express Button_A and Button_B as HID
keyboard "keys".

Circuit Playground HID Keyboard

import time

import board
import usb_hid
from adafruit_hid.keyboard import Keyboard
from adafruit_hid.keyboard_layout_us import KeyboardLayoutUS
from adafruit_hid.keycode import Keycode
from digitalio import DigitalInOut, Direction, Pull

Though the following example uses the Circuit Playground Express to demonstrate, the code works exactly
the same way with the Circuit Playground Bluefruit. Simply copy the code and follow along with your Circuit
Playground Bluefruit!

�

This example has been updated for version 4+ of the CircuitPython HID library. On the CircuitPlayground
Express this library is built into CircuitPython. So, please use the latest version of CircuitPython as well. (At
least 5.0.0-beta.3)

�

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 128 of 187

https://circuitpython.org/libraries

A simple neat keyboard demo in CircuitPython

The button pins we'll use, each will have an internal pulldown
buttonpins = [board.BUTTON_A, board.BUTTON_B]
our array of button objects
buttons = []
The keycode sent for each button, will be paired with a control key
buttonkeys = [Keycode.A, "Hello World!\n"]
controlkey = Keycode.SHIFT

the keyboard object!
sleep for a bit to avoid a race condition on some systems
time.sleep(1)
kbd = Keyboard(usb_hid.devices)
we're americans :)
layout = KeyboardLayoutUS(kbd)

make all pin objects, make them inputs with pulldowns
for pin in buttonpins:
 button = DigitalInOut(pin)
 button.direction = Direction.INPUT
 button.pull = Pull.DOWN
 buttons.append(button)

led = DigitalInOut(board.D13)
led.direction = Direction.OUTPUT

print("Waiting for button presses")

while True:
 # check each button
 # when pressed, the LED will light up,
 # when released, the keycode or string will be sent
 # this prevents rapid-fire repeats!
 for button in buttons:
 if button.value: # pressed?
 i = buttons.index(button)
 print("Button #%d Pressed" % i)

 # turn on the LED
 led.value = True

 while button.value:
 pass # wait for it to be released!
 # type the keycode or string
 k = buttonkeys[i] # get the corresponding keycode or string
 if isinstance(k, str):
 layout.write(k)
 else:
 kbd.press(controlkey, k) # press...
 kbd.release_all() # release!

 # turn off the LED
 led.value = False

 time.sleep(0.01)

Press Button A or Button B to have the keypresses sent.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 129 of 187

The Keyboard and Layout object are created, we only have US right now (if you make other layouts please submit a
GitHub pull request!)

the keyboard object!
kbd = Keyboard(usb_hid.devices)
we're americans :)
layout = KeyboardLayoutUS(kbd)

Then you can send key-down's with kbd.press(keycode, ...) You can have up to 6 keycode presses at once. Note that

these are keycodes so if you want to send a capital A, you need both SHIFT and A. Don't forget to call
kbd.release_all() soon after or you'll have a stuck key which is really annoying!

You can also send full strings, with layout.write("Hello World!\n") - it will use the layout to determine the keycodes to

press.

For more detail check out the documentation at https://circuitpython.readthedocs.io/projects/hid/en/latest/�

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 130 of 187

https://circuitpython.readthedocs.io/projects/hid/en/latest/

CircuitPython CPU
Temp

There is a CPU temperature sensor built into every ATSAMD21, ATSAMD51 and nRF52840 chips. CircuitPython makes
it really simple to read the data from this sensor. This works on the Adafruit CircuitPython boards it's built into the
microcontroller used for these boards.

The data is read using two simple commands. We're going to enter them in the REPL. Plug in your board, connect to
the serial console (https://adafru.it/Bec), and enter the REPL (https://adafru.it/Awz). Then, enter the following commands
into the REPL:

import microcontroller
microcontroller.cpu.temperature

That's it! You've printed the temperature in Celsius to the REPL. Note that it's not exactly the ambient temperature and
it's not super precise. But it's close!

If you'd like to print it out in Fahrenheit, use this simple formula: Celsius * (9/5) + 32. It's super easy to do math using
CircuitPython. Check it out!

Note that the temperature sensor built into the nRF52840 has a resolution of 0.25 degrees Celsius, so any
temperature you print out will be in 0.25 degree increments.�

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 131 of 187

file:///welcome-to-circuitpython/kattni-connecting-to-the-serial-console
file:///welcome-to-circuitpython/the-repl

CircuitPython Storage

CircuitPython boards show up as as USB drive, allowing you to edit code directly on the board. You've been doing this
for a while. By now, maybe you've wondered, "Can I write data from CircuitPython to the storage drive to act as a
datalogger?" The answer is yes!

However, it is a little tricky. You need to add some special code to boot.py, not just code.py. That's because you have
to set the filesystem to be read-only when you need to edit code to the disk from your computer, and set it to writeable
when you want the CircuitPython core to be able to write.

The following is your new boot.py. Copy and paste the code into boot.py using your favorite editor. You may need to
create a new file.

import board
import digitalio
import storage

For Gemma M0, Trinket M0, Metro M0/M4 Express, ItsyBitsy M0/M4 Express
switch = digitalio.DigitalInOut(board.D2)

For Feather M0/M4 Express
switch = digitalio.DigitalInOut(board.D5)

For Circuit Playground Express, Circuit Playground Bluefruit
switch = digitalio.DigitalInOut(board.D7)

switch.direction = digitalio.Direction.INPUT
switch.pull = digitalio.Pull.UP

If the switch pin is connected to ground CircuitPython can write to the drive
storage.remount("/", switch.value)

For Gemma M0, Trinket M0, Metro M0 Express, Metro M4 Express, ItsyBitsy M0 Express and ItsyBitsy M4 Express,
no changes to the initial code are needed.

For Feather M0 Express and Feather M4 Express, comment out switch = digitalio.DigitalInOut(board.D2) , and

uncomment switch = digitalio.DigitalInOut(board.D5) .

For Circuit Playground Express and Circuit Playground Bluefruit, comment out switch =
digitalio.DigitalInOut(board.D2) , and uncomment switch = digitalio.DigitalInOut(board.D7) . Remember, D7 is the

onboard slide switch, so there's no extra wires or alligator clips needed.

The following is your new code.py. Copy and paste the code into code.py using your favorite editor.

You can only have either your computer edit the CIRCUITPY drive files, or CircuitPython. You cannot have
both write to the drive at the same time. (Bad Things Will Happen so we do not allow you to do it!)�

Remember: To "comment out" a line, put a # and a space before it. To "uncomment" a line, remove the # +
space from the beginning of the line.�

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 132 of 187

import time

import board
import digitalio
import microcontroller

led = digitalio.DigitalInOut(board.D13)
led.switch_to_output()

try:
 with open("/temperature.txt", "a") as fp:
 while True:
 temp = microcontroller.cpu.temperature
 # do the C-to-F conversion here if you would like
 fp.write('{0:f}\n'.format(temp))
 fp.flush()
 led.value = not led.value
 time.sleep(1)
except OSError as e:
 delay = 0.5
 if e.args[0] == 28:
 delay = 0.25
 while True:
 led.value = not led.value
 time.sleep(delay)

Logging the Temperature

The way boot.py works is by checking to see if the pin you specified in the switch setup in your code is connected to a
ground pin. If it is, it changes the read-write state of the file system, so the CircuitPython core can begin logging the
temperature to the board.

For help finding the correct pins, see the wiring diagrams and information in the Find the Pins section of the
CircuitPython Digital In & Out guide (https://adafru.it/Bes). Instead of wiring up a switch, however, you'll be connecting
the pin directly to ground with alligator clips or jumper wires.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 133 of 187

file:///adafruit-trinket-m0-circuitpython-arduino/circuitpython-digital-in-out#find-the-pins

Once you copied the files to your board, eject it and unplug it from your computer. If you're using your Circuit
Playground Express, all you have to do is make sure the switch is to the right. Otherwise, use alligator clips or jumper
wires to connect the chosen pin to ground. Then, plug your board back into your computer.

You will not be able to edit code on your CIRCUITPY drive anymore!

The red LED should blink once a second and you will see a new temperature.txt file on CIRCUITPY.

boot.py only runs on first boot of the device, not if you re-load the serial console with ctrl+D or if you save a
file. You must EJECT the USB drive, then physically press the reset button!�

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 134 of 187

This file gets updated once per second, but you won't see data come in live. Instead, when you're ready to grab the
data, eject and unplug your board. For CPX, move the switch to the left, otherwise remove the wire connecting the pin
to ground. Now it will be possible for you to write to the filesystem from your computer again, but it will not be logging
data.

We have a more detailed guide on this project available here: CPU Temperature Logging with
CircuitPython. (https://adafru.it/zuF) If you'd like more details, check it out!

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 135 of 187

file:///cpu-temperature-logging-with-circuit-python

Playground Temperature

But wait! There's more -- the Circuit Playground Express can also tell the temperature!

How, you ask? With a build in thermistor. This little sensor is a thermally sensitive resistor, meaning it's resistance
changes based on temperature.

We can access its readings in CircuitPython by importing the adafruit_thermistor library, and then using the
board.TEMPERATURE pin to read the thermistor value.

Copy the code below in to a new file, then save it onto the board as main.py. Then, open up a REPL session and you'll
see the temperature readings in both Celsius and Fahrenheit.

Though the following example uses the Circuit Playground Express to demonstrate, the code works exactly
the same way with the Circuit Playground Bluefruit. Simply copy the code and follow along with your Circuit
Playground Bluefruit!

�

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 136 of 187

Circuit Playground Temperature
Reads the on-board temperature sensor and prints the value

import time

import adafruit_thermistor
import board

thermistor = adafruit_thermistor.Thermistor(
 board.TEMPERATURE, 10000, 10000, 25, 3950)

while True:
 temp_c = thermistor.temperature
 temp_f = thermistor.temperature * 9 / 5 + 32
 print("Temperature is: %f C and %f F" % (temp_c, temp_f))

 time.sleep(0.25)

Try placing your finger over the sensor (you'll see a thermometer icon on the board) and watch the readings change.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 137 of 187

Playground Light Sensor

The Circuit Playground Express can see you! OK, not really. That would be creepy.

But, it can sense light and dark, as well as colors and even your pulse!!

The Light Sensor in the upper left of the board (look for the eye icon) is a phototransistor. Here's how to use it as a
light sensor:

Though the following example uses the Circuit Playground Express to demonstrate, the code works exactly
the same way with the Circuit Playground Bluefruit. Simply copy the code and follow along with your Circuit
Playground Bluefruit!

�

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 138 of 187

Circuit Playground Light Sensor
Reads the on-board light sensor and graphs the brightness with NeoPixels

import time
import board
import neopixel
import analogio
import simpleio

pixels = neopixel.NeoPixel(board.NEOPIXEL, 10, brightness=.05, auto_write=False)
pixels.fill((0, 0, 0))
pixels.show()

light = analogio.AnalogIn(board.LIGHT)

while True:
 # light value remapped to pixel position
 peak = simpleio.map_range(light.value, 2000, 62000, 0, 9)
 print(light.value)
 print(int(peak))

 for i in range(0, 9, 1):
 if i <= peak:
 pixels[i] = (0, 255, 0)
 else:
 pixels[i] = (0, 0, 0)
 pixels.show()

 time.sleep(0.01)

Copy and paste that code into a text editor and then save it to your Circuit Playground Express as code.py.

The code reads the light sensor and then lights up the NeoPixels like a bar graph depending on the light level. Try
waving your hand over it, or shining it with a flashlight to see it change!

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 139 of 187

Playground Drum Machine

A wise man once said, "Nothing sounds better than an Eight-O-Eight."

(That wise man was Adam Horovitz of the Beastie Boys.)

The 808 to which Ad-Rock was referring is the Roland TR-808 drum machine. Let's build a little Circuit Playground
Express tribute to the venerable 808! Instead of a full-blown drum pattern sequencer, we'll just focus on the machine's
pads which are used for finger drumming to play back sampled drum sounds.

We can use the capacitive touch pads on the Circuit Playground Express as triggers, and small .wav files for our drum
sounds!

First, download the .zip file below, which contains all of the drum samples we'll be using. Save the file to your desktop
or somewhere else easy to find, and then unzip it.

https://adafru.it/zHc

https://adafru.it/zHc

You can plug in your Circuit Playground Express, and then drag the drum files onto it. It shows up as the CIRCUITPY
drive.

Though the following example uses the Circuit Playground Express to demonstrate, the code works exactly
the same way with the Circuit Playground Bluefruit. Simply copy the code and follow along with your Circuit
Playground Bluefruit!

�

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 140 of 187

https://cdn-learn.adafruit.com/assets/assets/000/047/298/original/drumSamples.zip?1507938887

Now, it's time to code the Circuit Playground Express! Copy the code shown below, and then paste it into your code
editor of choice. Save the file as code.py on your CIRCUITPY drive.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 141 of 187

Circuit Playground 808 Drum machine
import time
import board
import touchio
import digitalio

try:
 from audiocore import WaveFile
except ImportError:
 from audioio import WaveFile

try:
 from audioio import AudioOut
except ImportError:
 try:
 from audiopwmio import PWMAudioOut as AudioOut
 except ImportError:
 pass # not always supported by every board!

bpm = 120 # Beats per minute, change this to suit your tempo

Enable the speaker
speaker_enable = digitalio.DigitalInOut(board.SPEAKER_ENABLE)
speaker_enable.direction = digitalio.Direction.OUTPUT
speaker_enable.value = True

Make the input capacitive touchpads
capPins = (board.A1, board.A2, board.A3, board.A4, board.A5,
 board.A6, board.TX)

touchPad = []
for i in range(7):
 touchPad.append(touchio.TouchIn(capPins[i]))

The seven files assigned to the touchpads
audiofiles = ["bd_tek.wav", "elec_hi_snare.wav", "elec_cymbal.wav",
 "elec_blip2.wav", "bd_zome.wav", "bass_hit_c.wav",
 "drum_cowbell.wav"]

audio = AudioOut(board.SPEAKER)

def play_file(filename):
 print("playing file " + filename)
 file = open(filename, "rb")
 wave = WaveFile(file)
 audio.play(wave)
 time.sleep(bpm / 960) # Sixteenth note delay

while True:
 for i in range(7):
 if touchPad[i].value:
 play_file(audiofiles[i])

Try it out! When you tap the capacitive pads, the corresponding drum sample is triggered!!

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 142 of 187

Things are a bit crammed, admittedly, so you can try adding foil, copper tape, alligator clips, etc. in order to increase
the surface area and physical space you have for your drumming!

If you want to use your own sound files, you can! Record, sample, remix, or simply download files from a sound file
sight, such as freesample.org. Then, to make sure you have the files converted to the proper specifications, check out
this guide here (https://adafru.it/s8f) that'll show you how! Spoiler alert: you'll need to make a small, 22Khz (or lower), 16
bit PCM, mono .wav file!

Want to listen to your Drum Machine at body movin' volumes? No problem! Hook up an 1/8" (https://adafru.it/Bf3) or 1/4"
phono output (https://adafru.it/Bf4) to the GND and A0/Audio pads, then plug in to an amp!! I tried it on a small guitar
amp and it sounds great.

Capacitance is calibrated at startup, so you may need to reset the board after attaching leads to the pads!�

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 143 of 187

file:///adafruit-wave-shield-audio-shield-for-arduino/convert-files
https://www.adafruit.com/product/2790
https://www.adafruit.com/product/2911

Playground Sound
Meter

Use the microphone on your Circuit Playground Express to measure sound levels and display them on a VU-meter-like
display!

The program is below. There are many settings that you can change to make the readings more or less sensitive and
the display more or less jumpy. Try changing CURVE to be 4 or 1 or 10 or -2 and see what happens.

The program samples audio for a short time and the computes the energy in the sample (corresponding to volume)
using a Root-Mean-Square (https://adafru.it/Bf5) computation (RMS). You could try varying the sample size if you like.

The log_scale() function varies the number of NeoPixels lit in an exponential way, because sound levels can vary by

many factors of 10 between loud and soft. Try varying how it's computed to see what happens.

The program takes one sample when it first starts to set a "quiet" sound level. If that doesn't work for you, set
input_floor to be a fixed number. If the meter seems too sensitive, try changing input_ceiling = input_floor + 500 to

be input_ceiling = input_floor + 2000 or higher. Or go the other way.

You can also change the colors. Try different ways of computing volume_color(i) for more of a rainbow effect, or make

it a constant if you don't like changing colors.

The MIT License (MIT)
#
Copyright (c) 2017 Dan Halbert for Adafruit Industries
Copyright (c) 2017 Kattni Rembor, Tony DiCola for Adafruit Industries
#
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
#
The above copyright notice and this permission notice shall be included in

Though the following example uses the Circuit Playground Express to demonstrate, the code works exactly
the same way with the Circuit Playground Bluefruit. Simply copy the code and follow along with your Circuit
Playground Bluefruit!

�

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 144 of 187

https://en.wikipedia.org/wiki/Root_mean_square

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
#
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

Circuit Playground Sound Meter

import array
import math
import audiobusio
import board
import neopixel

Color of the peak pixel.
PEAK_COLOR = (100, 0, 255)
Number of total pixels - 10 build into Circuit Playground
NUM_PIXELS = 10

Exponential scaling factor.
Should probably be in range -10 .. 10 to be reasonable.
CURVE = 2
SCALE_EXPONENT = math.pow(10, CURVE * -0.1)

Number of samples to read at once.
NUM_SAMPLES = 160

Restrict value to be between floor and ceiling.
def constrain(value, floor, ceiling):
 return max(floor, min(value, ceiling))

Scale input_value between output_min and output_max, exponentially.
def log_scale(input_value, input_min, input_max, output_min, output_max):
 normalized_input_value = (input_value - input_min) / \
 (input_max - input_min)
 return output_min + \
 math.pow(normalized_input_value, SCALE_EXPONENT) \
 * (output_max - output_min)

Remove DC bias before computing RMS.
def normalized_rms(values):
 minbuf = int(mean(values))
 samples_sum = sum(
 float(sample - minbuf) * (sample - minbuf)
 for sample in values
)

 return math.sqrt(samples_sum / len(values))

def mean(values):
 return sum(values) / len(values)

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 145 of 187

def volume_color(volume):
 return 200, volume * (255 // NUM_PIXELS), 0

Main program

Set up NeoPixels and turn them all off.
pixels = neopixel.NeoPixel(board.NEOPIXEL, NUM_PIXELS, brightness=0.1, auto_write=False)
pixels.fill(0)
pixels.show()

mic = audiobusio.PDMIn(board.MICROPHONE_CLOCK, board.MICROPHONE_DATA,
 sample_rate=16000, bit_depth=16)

Record an initial sample to calibrate. Assume it's quiet when we start.
samples = array.array('H', [0] * NUM_SAMPLES)
mic.record(samples, len(samples))
Set lowest level to expect, plus a little.
input_floor = normalized_rms(samples) + 10
OR: used a fixed floor
input_floor = 50

You might want to print the input_floor to help adjust other values.
print(input_floor)

Corresponds to sensitivity: lower means more pixels light up with lower sound
Adjust this as you see fit.
input_ceiling = input_floor + 500

peak = 0
while True:
 mic.record(samples, len(samples))
 magnitude = normalized_rms(samples)
 # You might want to print this to see the values.
 # print(magnitude)

 # Compute scaled logarithmic reading in the range 0 to NUM_PIXELS
 c = log_scale(constrain(magnitude, input_floor, input_ceiling),
 input_floor, input_ceiling, 0, NUM_PIXELS)

 # Light up pixels that are below the scaled and interpolated magnitude.
 pixels.fill(0)
 for i in range(NUM_PIXELS):
 if i < c:
 pixels[i] = volume_color(i)
 # Light up the peak pixel and animate it slowly dropping.
 if c >= peak:
 peak = min(c, NUM_PIXELS - 1)
 elif peak > 0:
 peak = peak - 1
 if peak > 0:
 pixels[int(peak)] = PEAK_COLOR
 pixels.show()

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 146 of 187

Playground Color Picker

You can use your Circuit Playground Bluefruit with the Adafruit Bluefruit LE Connect (https://adafru.it/GcN) mobile app
to control the NeoPixel RGB LEDs on the CPB!

The Code

Plug your Circuit Playground Bluefruit into your computer, and save the following as code.py on the CIRCUITPY drive:

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 147 of 187

https://learn.adafruit.com/adafruit-circuit-playground-bluefruit/bluefruit-le-connect

CircuitPython NeoPixel Color Picker Example

import board
import neopixel
from adafruit_ble import BLERadio
from adafruit_ble.advertising.standard import ProvideServicesAdvertisement
from adafruit_ble.services.nordic import UARTService
from adafruit_bluefruit_connect.packet import Packet
from adafruit_bluefruit_connect.color_packet import ColorPacket

ble = BLERadio()
uart_server = UARTService()
advertisement = ProvideServicesAdvertisement(uart_server)

pixels = neopixel.NeoPixel(board.NEOPIXEL, 10, brightness=0.1)

while True:
 # Advertise when not connected.
 ble.start_advertising(advertisement)
 while not ble.connected:
 pass
 ble.stop_advertising()

 while ble.connected:
 packet = Packet.from_stream(uart_server)
 if isinstance(packet, ColorPacket):
 print(packet.color)
 pixels.fill(packet.color)

Connect to your board through the Adafruit Bluefruit LE Connect mobile app. If you need assistance, check out this
page on installing and using the app (https://adafru.it/GcN).

Once connected, from the device menu, tap on Controller, then Color Picker. Choose a color from the dial and tap
Select (Android) or Send selected color (iOS). The LEDs will light up in the color you chose!

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 148 of 187

https://learn.adafruit.com/adafruit-circuit-playground-bluefruit/bluefruit-le-connect

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 149 of 187

Playground Bluetooth Plotter

The Circuit Playground Bluefruit has a built in light sensor that returns a light value and a temperature sensor that
returns the temperature in degrees Celsius. The Adafruit Bluefruit LE Connect mobile app has a built in plotter function
that you can use to plot any numerical information. This page will show you how to plot the light and temperature data
from the Circuit Playground Bluefruit in the Bluefruit LE Connect app!

The Code

Plug your Circuit Playground Bluefruit into your computer, and save the following as code.py on the CIRCUITPY drive:

CircuitPython Bluefruit LE Connect Plotter Example

import time
import board
import analogio
import adafruit_thermistor
from adafruit_ble import BLERadio
from adafruit_ble.advertising.standard import ProvideServicesAdvertisement
from adafruit_ble.services.nordic import UARTService

ble = BLERadio()
uart_server = UARTService()
advertisement = ProvideServicesAdvertisement(uart_server)

thermistor = adafruit_thermistor.Thermistor(board.TEMPERATURE, 10000, 10000, 25, 3950)
light = analogio.AnalogIn(board.LIGHT)

def scale(value):
 """Scale the light sensor values from 0-65535 (AnalogIn range)
 to 0-50 (arbitrarily chosen to plot well with temperature)"""
 return value / 65535 * 50

while True:
 # Advertise when not connected.
 ble.start_advertising(advertisement)
 while not ble.connected:
 pass
 ble.stop_advertising()

 while ble.connected:
 print((scale(light.value), thermistor.temperature))
 uart_server.write("{},{}\n".format(scale(light.value), thermistor.temperature))
 time.sleep(0.1)

Connect to your board through the Adafruit Bluefruit LE Connect mobile app. If you need assistance, check out the
Bluefruit LE Connect Basics page in the Getting Started guide (https://adafru.it/F-x).

Once connected, tap Plotter.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 150 of 187

https://learn.adafruit.com/circuitpython-nrf52840/bluefruit-le-connect-basics

Your data should start plotting automatically. Try shining a light towards your Circuit Playground Bluefruit to see the
light value line change. Try placing your finger over the thermistor (towards the top-right, labeled A9, next to the
picture of a thermometer) to see the temperature value line change.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 151 of 187

That's all there is to plotting numerical data with the Circuit Playground Bluefruit and the Adafruit Bluefruit LE Connect
mobile app!

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 152 of 187

Arduino Support
Setup

You can install the Adafruit Bluefruit nRF52 BSP (Board Support Package) in two steps:

1. BSP Installation

Recommended: Installing the BSP via the Board Manager

Download and install the Arduino IDE (https://adafru.it/fvm) (At least v1.8)
Start the Arduino IDE
Go into Preferences
Add https://www.adafruit.com/package_adafruit_index.json as an 'Additional Board Manager URL' (see image

below)

Restart the Arduino IDE
Open the Boards Manager option from the Tools -> Board menu and install 'Adafruit nRF52 by Adafruit' (see
image below)

nRF52 support requires at least Arduino IDE version 1.8.6! Please make sure you have an up to date version
before proceeding with this guide!�

Please consult the FAQ section at the bottom of this page if you run into any problems installing or using this
BSP!�

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 153 of 187

https://www.arduino.cc/en/Main/Software

It will take up to a few minutes to finish installing the cross-compiling toolchain and tools associated with this BSP.

The delay during the installation stage shown in the image below is normal, please be patient and let the installation
terminate normally:

Once the BSP is installed, select 'Adafruit Bluefruit nRF52832 Feather' (for the nRF52 Feathger) of 'Adafruit
Bluefruit nRF52840 Feather Express' (for the nRF52840 Feather) from the Tools -> Board menu, which will
update your system config to use the right compiler and settings for the nRF52:

2. LINUX ONLY: adafruit-nrfutil Tool Installation

adafruit-nrfutil (https://adafru.it/Cau) is a modified version of Nordic's nrfutil (https://adafru.it/vaG), which is used to flash
boards using the built in serial bootloader. It is originally written for python2, but have been migrated to python3 and
renamed to adafruit-nrfutil since BSP version 0.8.5.

Install python3 if it is not installed in your system already

$ sudo apt-get install python3

Then run the following command to install the tool from PyPi

$ pip3 install --user adafruit-nrfutil

Add pip3 installation dir to your PATH if it is not added already. Make sure adafruit-nrfutil can be executed in terminal
by running

$ adafruit-nrfutil version
adafruit-nrfutil version 0.5.3.post12

3. Update the bootloader (nRF52832 ONLY)

This step is only required on Linux, pre-built binaries of adafruit-nrfutil for Windows and MacOS are already
included in the BSP. That should work out of the box for most setups.�

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 154 of 187

https://github.com/adafruit/Adafruit_nRF52_nrfutil
https://github.com/NordicSemiconductor/pc-nrfutil

To keep up with Nordic's SoftDevice advances, you will likely need to update your bootloader if you are using the
original nRF52832 based Bluefruit nRF52 Feather boards.

Follow this link for instructions on how to do that

https://adafru.it/Dsx

https://adafru.it/Dsx

Advanced Option: Manually Install the BSP via 'git'

If you wish to do any development against the core codebase (generate pull requests, etc.), you can also optionally
install the Adafruit nRF52 BSP manually using 'git', as decribed below:

Adafruit nRF52 BSP via git (for core development and PRs only)

1. Install BSP via Board Manager as above to install compiler & tools.
2. Delete the core folder nrf52 installed by Board Manager in Adruino15, depending on your OS. It could be

macOS: ~/Library/Arduino15/packages/adafruit/hardware/nrf52
Linux: ~/.arduino15/packages/adafruit/hardware/nrf52
Windows: %APPDATA%\Local\Arduino15\packages\adafruit\hardware\nrf52

3. Go to the sketchbook folder on your command line, which should be one of the following:
macOS: ~/Documents/Arduino
Linux: ~/Arduino
Windows: ~/Documents/Arduino

4. Create a folder named hardware/Adafruit , if it does not exist, and change directories into it.

5. Clone the Adafruit_nRF52_Arduino (https://adafru.it/vaF) repo in the folder described in step 2:
git clone git@github.com:adafruit/Adafruit_nRF52_Arduino.git

6. This should result in a final folder name like
~/Documents/Arduino/hardware/Adafruit/Adafruit_nRF52_Arduino (macOS).

7. Restart the Arduino IDE

This step ISN'T required for the newer nRF52840 Feather Express, which has a different bootloader entirely!�

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 155 of 187

https://learn.adafruit.com/bluefruit-nrf52-feather-learning-guide/updating-the-bootloader
https://github.com/adafruit/Adafruit_nRF52_Arduino

Arduino BLE Examples

There are numerous examples available for the Bluefruit nRF52/nRF52840 Feathers in the Examples menu of the
nRF52 BSP, and these are always up to date. You're first stop looking for example code should be there:

Example Source Code

The latest example source code is always available and visible on Github, and the public git repository should be
considered the definitive source of example code for this board.

https://adafru.it/vaK

https://adafru.it/vaK

Documented Examples

To help explain some common use cases for the nRF52 BLE API, feel free to consult the example documentation in
this section of the learning guide:

Advertising: Beacon - Shows how to use the BLEBeacon helper class to configure your Bleufruit nRF52 Feather
as a beacon
BLE UART: Controller - Shows how to use the Controller utility in our Bluefruit LE Connect apps to send basic
data between your peripheral and your phone or tablet.
Custom: HRM - Shows how to defined and work with a custom GATT Service and Characteristic, using the
officially adopted Heart Rate Monitor (HRM) service as an example.
BLE Pin I/O (StandardFirmataBLE) Shows how to control Pin I/O of nRF52 with Firmata protocol

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 156 of 187

https://github.com/adafruit/Adafruit_nRF52_Arduino/tree/master/libraries/Bluefruit52Lib/examples

Advertising: Beacon

This example shows how you can use the BLEBeacon helper class and advertising API to configure your Bluefruit
nRF52 board as a 'Beacon'.

Complete Code

/***
 This is an example for our nRF52 based Bluefruit LE modules

 Pick one up today in the adafruit shop!

 Adafruit invests time and resources providing this open source code,
 please support Adafruit and open-source hardware by purchasing
 products from Adafruit!

 MIT license, check LICENSE for more information
 All text above, and the splash screen below must be included in
 any redistribution
***/
#include <bluefruit.h>

// Beacon uses the Manufacturer Specific Data field in the advertising
// packet, which means you must provide a valid Manufacturer ID. Update
// the field below to an appropriate value. For a list of valid IDs see:
// https://www.bluetooth.com/specifications/assigned-numbers/company-identifiers
// 0x004C is Apple (for example)
#define MANUFACTURER_ID 0x004C

// AirLocate UUID: E2C56DB5-DFFB-48D2-B060-D0F5A71096E0
uint8_t beaconUuid[16] =
{
 0xE2, 0xC5, 0x6D, 0xB5, 0xDF, 0xFB, 0x48, 0xD2,
 0xB0, 0x60, 0xD0, 0xF5, 0xA7, 0x10, 0x96, 0xE0,
};

// A valid Beacon packet consists of the following information:
// UUID, Major, Minor, RSSI @ 1M
BLEBeacon beacon(beaconUuid, 0x0000, 0x0000, -54);

void setup()
{
 Serial.begin(115200);
 while (!Serial) delay(10); // for nrf52840 with native usb

 Serial.println("Bluefruit52 Beacon Example");
 Serial.println("--------------------------\n");

 Bluefruit.begin();

 // off Blue LED for lowest power consumption
 Bluefruit.autoConnLed(false);
 Bluefruit.setTxPower(0); // Check bluefruit.h for supported values
 Bluefruit.setName("Bluefruit52");

 // Manufacturer ID is required for Manufacturer Specific Data
 beacon.setManufacturer(MANUFACTURER_ID);

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 157 of 187

 beacon.setManufacturer(MANUFACTURER_ID);

 // Setup the advertising packet
 startAdv();

 Serial.println("Broadcasting beacon, open your beacon app to test");

 // Suspend Loop() to save power, since we didn't have any code there
 suspendLoop();
}

void startAdv(void)
{
 // Advertising packet
 // Set the beacon payload using the BLEBeacon class populated
 // earlier in this example
 Bluefruit.Advertising.setBeacon(beacon);

 // Secondary Scan Response packet (optional)
 // Since there is no room for 'Name' in Advertising packet
 Bluefruit.ScanResponse.addName();

 /* Start Advertising
 * - Enable auto advertising if disconnected
 * - Timeout for fast mode is 30 seconds
 * - Start(timeout) with timeout = 0 will advertise forever (until connected)
 *
 * Apple Beacon specs
 * - Type: Non connectable, undirected
 * - Fixed interval: 100 ms -> fast = slow = 100 ms
 */
 //Bluefruit.Advertising.setType(BLE_GAP_ADV_TYPE_ADV_NONCONN_IND);
 Bluefruit.Advertising.restartOnDisconnect(true);
 Bluefruit.Advertising.setInterval(160, 160); // in unit of 0.625 ms
 Bluefruit.Advertising.setFastTimeout(30); // number of seconds in fast mode
 Bluefruit.Advertising.start(0); // 0 = Don't stop advertising after n seconds
}

void loop()
{
 // loop is already suspended, CPU will not run loop() at all
}

Output

You can use the nRF Beacons application from Nordic Semiconductors to test this sketch:

nRF Beacons for iOS (https://adafru.it/vaC)
nRF Beacons for Android (https://adafru.it/vaD)

Make sure that you set the UUID, Major and Minor values to match the sketch above, and then run the sketch at the
same time as the nRF Beacons application.

With the default setup you should see a Mona Lisa icon when the beacon is detected. If you don't see this, double
check the UUID, Major and Minor values to be sure they match exactly.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 158 of 187

https://itunes.apple.com/app/nrf-beacons/id879614768?mt=8
https://play.google.com/store/apps/details?id=no.nordicsemi.android.nrfbeacon

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 159 of 187

BLE UART:
Controller

This examples shows you you can use the BLEUart helper class and the Bluefruit LE Connect applications to send
based keypad and sensor data to your nRF52.

Setup

In order to use this sketch, you will need to open Bluefruit LE Connect on your mobile device using our free
iOS (https://adafru.it/f4H), Android (https://adafru.it/f4G) or OS X (https://adafru.it/o9F) applications.

Load the Controller example sketch (https://adafru.it/vaN) in the Arduino IDE
Compile the sketch and flash it to your nRF52 based Feather
Once you are done uploading, open the Serial Monitor (Tools > Serial Monitor)
Open the Bluefruit LE Connect application on your mobile device
Connect to the appropriate target (probably 'Bluefruit52')
Once connected switch to the Controller application inside the app
Enable an appropriate control surface. The Color Picker control surface is shown below, for example (screen shot
taken from the iOS application):

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 160 of 187

https://itunes.apple.com/app/adafruit-bluefruit-le-connect/id830125974?mt=8
https://play.google.com/store/apps/details?id=com.adafruit.bluefruit.le.connect
https://itunes.apple.com/us/app/adafruit-bluefruit-le-connect/id1082414600?mt=12
https://github.com/adafruit/Adafruit_nRF52_Arduino/tree/master/libraries/Bluefruit52Lib/examples/Peripheral/controller

As you change the color (or as other data becomes available) you should receive the data on the nRF52, and see it in
the Serial Monitor output:

Complete Code

/***
 This is an example for our nRF52 based Bluefruit LE modules

 Pick one up today in the adafruit shop!

 Adafruit invests time and resources providing this open source code,
 please support Adafruit and open-source hardware by purchasing

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 161 of 187

 please support Adafruit and open-source hardware by purchasing
 products from Adafruit!

 MIT license, check LICENSE for more information
 All text above, and the splash screen below must be included in
 any redistribution
***/

#include <bluefruit.h>

// OTA DFU service
BLEDfu bledfu;

// Uart over BLE service
BLEUart bleuart;

// Function prototypes for packetparser.cpp
uint8_t readPacket (BLEUart *ble_uart, uint16_t timeout);
float parsefloat (uint8_t *buffer);
void printHex (const uint8_t * data, const uint32_t numBytes);

// Packet buffer
extern uint8_t packetbuffer[];

void setup(void)
{
 Serial.begin(115200);
 while (!Serial) delay(10); // for nrf52840 with native usb

 Serial.println(F("Adafruit Bluefruit52 Controller App Example"));
 Serial.println(F("---"));

 Bluefruit.begin();
 Bluefruit.setTxPower(4); // Check bluefruit.h for supported values
 Bluefruit.setName("Bluefruit52");

 // To be consistent OTA DFU should be added first if it exists
 bledfu.begin();

 // Configure and start the BLE Uart service
 bleuart.begin();

 // Set up and start advertising
 startAdv();

 Serial.println(F("Please use Adafruit Bluefruit LE app to connect in Controller mode"));
 Serial.println(F("Then activate/use the sensors, color picker, game controller, etc!"));
 Serial.println();
}

void startAdv(void)
{
 // Advertising packet
 Bluefruit.Advertising.addFlags(BLE_GAP_ADV_FLAGS_LE_ONLY_GENERAL_DISC_MODE);
 Bluefruit.Advertising.addTxPower();

 // Include the BLE UART (AKA 'NUS') 128-bit UUID
 Bluefruit.Advertising.addService(bleuart);

 // Secondary Scan Response packet (optional)

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 162 of 187

 // Since there is no room for 'Name' in Advertising packet
 Bluefruit.ScanResponse.addName();

 /* Start Advertising
 * - Enable auto advertising if disconnected
 * - Interval: fast mode = 20 ms, slow mode = 152.5 ms
 * - Timeout for fast mode is 30 seconds
 * - Start(timeout) with timeout = 0 will advertise forever (until connected)
 *
 * For recommended advertising interval
 * https://developer.apple.com/library/content/qa/qa1931/_index.html
 */
 Bluefruit.Advertising.restartOnDisconnect(true);
 Bluefruit.Advertising.setInterval(32, 244); // in unit of 0.625 ms
 Bluefruit.Advertising.setFastTimeout(30); // number of seconds in fast mode
 Bluefruit.Advertising.start(0); // 0 = Don't stop advertising after n seconds
}

/**/
/*!
 @brief Constantly poll for new command or response data
*/
/**/
void loop(void)
{
 // Wait for new data to arrive
 uint8_t len = readPacket(&bleuart, 500);
 if (len == 0) return;

 // Got a packet!
 // printHex(packetbuffer, len);

 // Color
 if (packetbuffer[1] == 'C') {
 uint8_t red = packetbuffer[2];
 uint8_t green = packetbuffer[3];
 uint8_t blue = packetbuffer[4];
 Serial.print ("RGB #");
 if (red < 0x10) Serial.print("0");
 Serial.print(red, HEX);
 if (green < 0x10) Serial.print("0");
 Serial.print(green, HEX);
 if (blue < 0x10) Serial.print("0");
 Serial.println(blue, HEX);
 }

 // Buttons
 if (packetbuffer[1] == 'B') {
 uint8_t buttnum = packetbuffer[2] - '0';
 boolean pressed = packetbuffer[3] - '0';
 Serial.print ("Button "); Serial.print(buttnum);
 if (pressed) {
 Serial.println(" pressed");
 } else {
 Serial.println(" released");
 }
 }

 // GPS Location
 if (packetbuffer[1] == 'L') {

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 163 of 187

 if (packetbuffer[1] == 'L') {
 float lat, lon, alt;
 lat = parsefloat(packetbuffer+2);
 lon = parsefloat(packetbuffer+6);
 alt = parsefloat(packetbuffer+10);
 Serial.print("GPS Location\t");
 Serial.print("Lat: "); Serial.print(lat, 4); // 4 digits of precision!
 Serial.print('\t');
 Serial.print("Lon: "); Serial.print(lon, 4); // 4 digits of precision!
 Serial.print('\t');
 Serial.print(alt, 4); Serial.println(" meters");
 }

 // Accelerometer
 if (packetbuffer[1] == 'A') {
 float x, y, z;
 x = parsefloat(packetbuffer+2);
 y = parsefloat(packetbuffer+6);
 z = parsefloat(packetbuffer+10);
 Serial.print("Accel\t");
 Serial.print(x); Serial.print('\t');
 Serial.print(y); Serial.print('\t');
 Serial.print(z); Serial.println();
 }

 // Magnetometer
 if (packetbuffer[1] == 'M') {
 float x, y, z;
 x = parsefloat(packetbuffer+2);
 y = parsefloat(packetbuffer+6);
 z = parsefloat(packetbuffer+10);
 Serial.print("Mag\t");
 Serial.print(x); Serial.print('\t');
 Serial.print(y); Serial.print('\t');
 Serial.print(z); Serial.println();
 }

 // Gyroscope
 if (packetbuffer[1] == 'G') {
 float x, y, z;
 x = parsefloat(packetbuffer+2);
 y = parsefloat(packetbuffer+6);
 z = parsefloat(packetbuffer+10);
 Serial.print("Gyro\t");
 Serial.print(x); Serial.print('\t');
 Serial.print(y); Serial.print('\t');
 Serial.print(z); Serial.println();
 }

 // Quaternions
 if (packetbuffer[1] == 'Q') {
 float x, y, z, w;
 x = parsefloat(packetbuffer+2);
 y = parsefloat(packetbuffer+6);
 z = parsefloat(packetbuffer+10);
 w = parsefloat(packetbuffer+14);
 Serial.print("Quat\t");
 Serial.print(x); Serial.print('\t');
 Serial.print(y); Serial.print('\t');
 Serial.print(z); Serial.print('\t');
 Serial.print(w); Serial.println();

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 164 of 187

 Serial.print(w); Serial.println();
 }
}

You will also need the following helper class in a file called packetParser.cpp:

#include <string.h>
#include <Arduino.h>
#include <bluefruit.h>

#define PACKET_ACC_LEN (15)
#define PACKET_GYRO_LEN (15)
#define PACKET_MAG_LEN (15)
#define PACKET_QUAT_LEN (19)
#define PACKET_BUTTON_LEN (5)
#define PACKET_COLOR_LEN (6)
#define PACKET_LOCATION_LEN (15)

// READ_BUFSIZE Size of the read buffer for incoming packets
#define READ_BUFSIZE (20)

/* Buffer to hold incoming characters */
uint8_t packetbuffer[READ_BUFSIZE+1];

/**/
/*!
 @brief Casts the four bytes at the specified address to a float
*/
/**/
float parsefloat(uint8_t *buffer)
{
 float f;
 memcpy(&f, buffer, 4);
 return f;
}

/**/
/*!
 @brief Prints a hexadecimal value in plain characters
 @param data Pointer to the byte data
 @param numBytes Data length in bytes
*/
/**/
void printHex(const uint8_t * data, const uint32_t numBytes)
{
 uint32_t szPos;
 for (szPos=0; szPos < numBytes; szPos++)
 {
 Serial.print(F("0x"));
 // Append leading 0 for small values
 if (data[szPos] <= 0xF)
 {
 Serial.print(F("0"));
 Serial.print(data[szPos] & 0xf, HEX);
 }
 else
 {

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 165 of 187

 {
 Serial.print(data[szPos] & 0xff, HEX);
 }
 // Add a trailing space if appropriate
 if ((numBytes > 1) && (szPos != numBytes - 1))
 {
 Serial.print(F(" "));
 }
 }
 Serial.println();
}

/**/
/*!
 @brief Waits for incoming data and parses it
*/
/**/
uint8_t readPacket(BLEUart *ble_uart, uint16_t timeout)
{
 uint16_t origtimeout = timeout, replyidx = 0;

 memset(packetbuffer, 0, READ_BUFSIZE);

 while (timeout--) {
 if (replyidx >= 20) break;
 if ((packetbuffer[1] == 'A') && (replyidx == PACKET_ACC_LEN))
 break;
 if ((packetbuffer[1] == 'G') && (replyidx == PACKET_GYRO_LEN))
 break;
 if ((packetbuffer[1] == 'M') && (replyidx == PACKET_MAG_LEN))
 break;
 if ((packetbuffer[1] == 'Q') && (replyidx == PACKET_QUAT_LEN))
 break;
 if ((packetbuffer[1] == 'B') && (replyidx == PACKET_BUTTON_LEN))
 break;
 if ((packetbuffer[1] == 'C') && (replyidx == PACKET_COLOR_LEN))
 break;
 if ((packetbuffer[1] == 'L') && (replyidx == PACKET_LOCATION_LEN))
 break;

 while (ble_uart->available()) {
 char c = ble_uart->read();
 if (c == '!') {
 replyidx = 0;
 }
 packetbuffer[replyidx] = c;
 replyidx++;
 timeout = origtimeout;
 }

 if (timeout == 0) break;
 delay(1);
 }

 packetbuffer[replyidx] = 0; // null term

 if (!replyidx) // no data or timeout
 return 0;
 if (packetbuffer[0] != '!') // doesn't start with '!' packet beginning
 return 0;

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 166 of 187

 return 0;

 // check checksum!
 uint8_t xsum = 0;
 uint8_t checksum = packetbuffer[replyidx-1];

 for (uint8_t i=0; i<replyidx-1; i++) {
 xsum += packetbuffer[i];
 }
 xsum = ~xsum;

 // Throw an error message if the checksum's don't match
 if (xsum != checksum)
 {
 Serial.print("Checksum mismatch in packet : ");
 printHex(packetbuffer, replyidx+1);
 return 0;
 }

 // checksum passed!
 return replyidx;
}

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 167 of 187

Custom: HRM

The BLEService and BLECharacteristic classes can be used to implement any custom or officially adopted BLE service
of characteristic using a set of basic properties and callback handlers.

The example below shows how to use these classes to implement the Heart Rate Monitor (https://adafru.it/vaO)
service, as defined by the Bluetooth SIG.

HRM Service Definition

UUID: 0x180D (https://adafru.it/vaO)

Only the first characteristic is mandatory, but we will also implement the optional Body Sensor Location characteristic.
Heart Rate Control Point won't be used in this example to keep things simple.

Implementing the HRM Service and Characteristics

The core service and the first two characteristics can be implemented with the following code:

First, define the BLEService and BLECharacteristic variables that will be used in your project:

/* HRM Service Definitions
 * Heart Rate Monitor Service: 0x180D
 * Heart Rate Measurement Char: 0x2A37
 * Body Sensor Location Char: 0x2A38
 */
BLEService hrms = BLEService(UUID16_SVC_HEART_RATE);
BLECharacteristic hrmc = BLECharacteristic(UUID16_CHR_HEART_RATE_MEASUREMENT);
BLECharacteristic bslc = BLECharacteristic(UUID16_CHR_BODY_SENSOR_LOCATION);

Then you need to 'populate' those variables with appropriate values. For simplicity sake, you can define a custom
function for your service where all of the code is placed, and then just call this function once in the 'setup' function:

void setupHRM(void)
{
 // Configure the Heart Rate Monitor service
 // See: https://www.bluetooth.com/specifications/gatt/viewer?
attributeXmlFile=org.bluetooth.service.heart_rate.xml
 // Supported Characteristics:
 // Name UUID Requirement Properties
 // ---------------------------- ------ ----------- ----------
 // Heart Rate Measurement 0x2A37 Mandatory Notify
 // Body Sensor Location 0x2A38 Optional Read
 // Heart Rate Control Point 0x2A39 Conditional Write <-- Not used here
 hrms.begin();

 // Note: You must call .begin() on the BLEService before calling .begin() on

Characteristic Name

Heart Rate Measurement

Body Sensor Location

Heart Rate Control Point

UUID

0x2A37

0x2A38

0x2A39

Requirement

Mandatory

Optional

Conditional

Properties

Notify

Read

Write

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 168 of 187

https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.service.heart_rate.xml
https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.service.heart_rate.xml
https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.characteristic.heart_rate_measurement.xml
https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.characteristic.body_sensor_location.xml
https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.characteristic.heart_rate_control_point.xml

 // Note: You must call .begin() on the BLEService before calling .begin() on
 // any characteristic(s) within that service definition.. Calling .begin() on
 // a BLECharacteristic will cause it to be added to the last BLEService that
 // was 'begin()'ed!

 // Configure the Heart Rate Measurement characteristic
 // See: https://www.bluetooth.com/specifications/gatt/viewer?
attributeXmlFile=org.bluetooth.characteristic.heart_rate_measurement.xml
 // Permission = Notify
 // Min Len = 1
 // Max Len = 8
 // B0 = UINT8 - Flag (MANDATORY)
 // b5:7 = Reserved
 // b4 = RR-Internal (0 = Not present, 1 = Present)
 // b3 = Energy expended status (0 = Not present, 1 = Present)
 // b1:2 = Sensor contact status (0+1 = Not supported, 2 = Supported but contact not detected, 3
= Supported and detected)
 // b0 = Value format (0 = UINT8, 1 = UINT16)
 // B1 = UINT8 - 8-bit heart rate measurement value in BPM
 // B2:3 = UINT16 - 16-bit heart rate measurement value in BPM
 // B4:5 = UINT16 - Energy expended in joules
 // B6:7 = UINT16 - RR Internal (1/1024 second resolution)
 hrmc.setProperties(CHR_PROPS_NOTIFY);
 hrmc.setPermission(SECMODE_OPEN, SECMODE_NO_ACCESS);
 hrmc.setFixedLen(2);
 hrmc.setCccdWriteCallback(cccd_callback); // Optionally capture CCCD updates
 hrmc.begin();
 uint8_t hrmdata[2] = { 0b00000110, 0x40 }; // Set the characteristic to use 8-bit values, with the
sensor connected and detected
 hrmc.notify(hrmdata, 2); // Use .notify instead of .write!

 // Configure the Body Sensor Location characteristic
 // See: https://www.bluetooth.com/specifications/gatt/viewer?
attributeXmlFile=org.bluetooth.characteristic.body_sensor_location.xml
 // Permission = Read
 // Min Len = 1
 // Max Len = 1
 // B0 = UINT8 - Body Sensor Location
 // 0 = Other
 // 1 = Chest
 // 2 = Wrist
 // 3 = Finger
 // 4 = Hand
 // 5 = Ear Lobe
 // 6 = Foot
 // 7:255 = Reserved
 bslc.setProperties(CHR_PROPS_READ);
 bslc.setPermission(SECMODE_OPEN, SECMODE_NO_ACCESS);
 bslc.setFixedLen(1);
 bslc.begin();
 bslc.write8(2); // Set the characteristic to 'Wrist' (2)
}

Service + Characteristic Setup Code Analysis

1. The first thing to do is to call .begin() on the BLEService (hrms above). Since the UUID is set in the object declaration
at the top of the sketch, there is normally nothing else to do with the BLEService instance.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 169 of 187

2. Next, you can configure the Heart Rate Measurement characteristic (hrmc above). The values that you set for this
will depend on the characteristic definition, but for convenience sake we've documented the key information in the
comments in the code above.

' hrmc.setProperties(CHR_PROPS_NOTIFY); ' - This sets the PROPERTIES value for the characteristic, which

determines how the characteristic can be accessed. In this case, the Bluetooth SIG has defined the characteristic
as Notify, which means that the peripheral will receive a request ('notification') from the Central when the Central
wants to receive data using this characteristic.
` hrmc.setPermission(SECMODE_OPEN, SECMODE_NO_ACCESS); ` - This sets the security for the characteristic,

and should normally be set to the values used in this example.
` hrmc.setFixedLen(2); ` - This tells the Bluetooth stack how many bytes the characteristic contains (normally a

value between 1 and 20). In this case, we will use a fixed size of two bytes, so we call .setFixedLen. If the
characteristic has a variable length, you would need to set the max size via .setMaxLen.
' hrmc.setCccdWriteCallback(cccd_callback); ' - This optional code sets the callback that will be fired when the

CCCD record is updated by the central. This is relevant because the characteristic is setup with the NOTIFY
property. When the Central sets to 'Notify' bit, it will write to the CCCD record, and you can capture this write
even in the CCCD callback and turn the sensor on, for example, allowing you to save power by only turning the
sensor on (and back off) when it is or isn't actually being used. For the implementation of the CCCD callback
handler, see the full sample code at the bottom of this page.
' hrmc.begin(); ' Once all of the properties have been set, you must call .begin() which will add the characteristic

definition to the last BLEService that was '.begin()ed'.

3. Optionally set an initial value for the characteristic(s), such as the following code that populates 'hrmc' with a correct
values, indicating that we are providing 8-bit heart rate monitor values, that the Body Sensor Location characteristic is
present, and setting the first heart rate value to 0x04:

// Set the characteristic to use 8-bit values, with the sensor connected and detected
uint8_t hrmdata[2] = { 0b00000110, 0x40 };

// Use .notify instead of .write!
hrmc.notify(hrmdata, 2);

The CCCD callback handler has the following signature:

You MUST call .begin() on the BLEService before adding any BLECharacteristics. Any BLECharacteristic will
automatically be added to the last BLEService that was `begin()'ed!�

Note that we use .notify() in the example above instead of .write(), since this characteristic is setup with the
NOTIFY property which needs to be handled in a slightly different manner than other characteristics.�

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 170 of 187

void cccd_callback(uint16_t conn_hdl, BLECharacteristic* chr, uint16_t cccd_value)
{
 // Display the raw request packet
 Serial.print("CCCD Updated: ");
 //Serial.printBuffer(request->data, request->len);
 Serial.print(cccd_value);
 Serial.println("");

 // Check the characteristic this CCCD update is associated with in case
 // this handler is used for multiple CCCD records.
 if (chr->uuid == htmc.uuid) {
 if (chr->indicateEnabled(conn_hdl)) {
 Serial.println("Temperature Measurement 'Indicate' enabled");
 } else {
 Serial.println("Temperature Measurement 'Indicate' disabled");
 }
 }
}

4. Repeat the same procedure for any other BLECharacteristics in your service.

Full Sample Code

The full sample code for this example can be seen below:

/***
 This is an example for our nRF52 based Bluefruit LE modules

 Pick one up today in the adafruit shop!

 Adafruit invests time and resources providing this open source code,
 please support Adafruit and open-source hardware by purchasing
 products from Adafruit!

 MIT license, check LICENSE for more information
 All text above, and the splash screen below must be included in
 any redistribution
***/
#include <bluefruit.h>

/* HRM Service Definitions
 * Heart Rate Monitor Service: 0x180D
 * Heart Rate Measurement Char: 0x2A37
 * Body Sensor Location Char: 0x2A38
 */
BLEService hrms = BLEService(UUID16_SVC_HEART_RATE);
BLECharacteristic hrmc = BLECharacteristic(UUID16_CHR_HEART_RATE_MEASUREMENT);
BLECharacteristic bslc = BLECharacteristic(UUID16_CHR_BODY_SENSOR_LOCATION);

BLEDis bledis; // DIS (Device Information Service) helper class instance
BLEBas blebas; // BAS (Battery Service) helper class instance

uint8_t bps = 0;

void setup()
{
 Serial.begin(115200);

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 171 of 187

 while (!Serial) delay(10); // for nrf52840 with native usb

 Serial.println("Bluefruit52 HRM Example");
 Serial.println("-----------------------\n");

 // Initialise the Bluefruit module
 Serial.println("Initialise the Bluefruit nRF52 module");
 Bluefruit.begin();

 // Set the advertised device name (keep it short!)
 Serial.println("Setting Device Name to 'Feather52 HRM'");
 Bluefruit.setName("Bluefruit52 HRM");

 // Set the connect/disconnect callback handlers
 Bluefruit.Periph.setConnectCallback(connect_callback);
 Bluefruit.Periph.setDisconnectCallback(disconnect_callback);

 // Configure and Start the Device Information Service
 Serial.println("Configuring the Device Information Service");
 bledis.setManufacturer("Adafruit Industries");
 bledis.setModel("Bluefruit Feather52");
 bledis.begin();

 // Start the BLE Battery Service and set it to 100%
 Serial.println("Configuring the Battery Service");
 blebas.begin();
 blebas.write(100);

 // Setup the Heart Rate Monitor service using
 // BLEService and BLECharacteristic classes
 Serial.println("Configuring the Heart Rate Monitor Service");
 setupHRM();

 // Setup the advertising packet(s)
 Serial.println("Setting up the advertising payload(s)");
 startAdv();

 Serial.println("Ready Player One!!!");
 Serial.println("\nAdvertising");
}

void startAdv(void)
{
 // Advertising packet
 Bluefruit.Advertising.addFlags(BLE_GAP_ADV_FLAGS_LE_ONLY_GENERAL_DISC_MODE);
 Bluefruit.Advertising.addTxPower();

 // Include HRM Service UUID
 Bluefruit.Advertising.addService(hrms);

 // Include Name
 Bluefruit.Advertising.addName();

 /* Start Advertising
 * - Enable auto advertising if disconnected
 * - Interval: fast mode = 20 ms, slow mode = 152.5 ms
 * - Timeout for fast mode is 30 seconds
 * - Start(timeout) with timeout = 0 will advertise forever (until connected)
 *
 * For recommended advertising interval

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 172 of 187

 * For recommended advertising interval
 * https://developer.apple.com/library/content/qa/qa1931/_index.html
 */
 Bluefruit.Advertising.restartOnDisconnect(true);
 Bluefruit.Advertising.setInterval(32, 244); // in unit of 0.625 ms
 Bluefruit.Advertising.setFastTimeout(30); // number of seconds in fast mode
 Bluefruit.Advertising.start(0); // 0 = Don't stop advertising after n seconds
}

void setupHRM(void)
{
 // Configure the Heart Rate Monitor service
 // See: https://www.bluetooth.com/specifications/gatt/viewer?
attributeXmlFile=org.bluetooth.service.heart_rate.xml
 // Supported Characteristics:
 // Name UUID Requirement Properties
 // ---------------------------- ------ ----------- ----------
 // Heart Rate Measurement 0x2A37 Mandatory Notify
 // Body Sensor Location 0x2A38 Optional Read
 // Heart Rate Control Point 0x2A39 Conditional Write <-- Not used here
 hrms.begin();

 // Note: You must call .begin() on the BLEService before calling .begin() on
 // any characteristic(s) within that service definition.. Calling .begin() on
 // a BLECharacteristic will cause it to be added to the last BLEService that
 // was 'begin()'ed!

 // Configure the Heart Rate Measurement characteristic
 // See: https://www.bluetooth.com/specifications/gatt/viewer?
attributeXmlFile=org.bluetooth.characteristic.heart_rate_measurement.xml
 // Properties = Notify
 // Min Len = 1
 // Max Len = 8
 // B0 = UINT8 - Flag (MANDATORY)
 // b5:7 = Reserved
 // b4 = RR-Internal (0 = Not present, 1 = Present)
 // b3 = Energy expended status (0 = Not present, 1 = Present)
 // b1:2 = Sensor contact status (0+1 = Not supported, 2 = Supported but contact not detected, 3
= Supported and detected)
 // b0 = Value format (0 = UINT8, 1 = UINT16)
 // B1 = UINT8 - 8-bit heart rate measurement value in BPM
 // B2:3 = UINT16 - 16-bit heart rate measurement value in BPM
 // B4:5 = UINT16 - Energy expended in joules
 // B6:7 = UINT16 - RR Internal (1/1024 second resolution)
 hrmc.setProperties(CHR_PROPS_NOTIFY);
 hrmc.setPermission(SECMODE_OPEN, SECMODE_NO_ACCESS);
 hrmc.setFixedLen(2);
 hrmc.setCccdWriteCallback(cccd_callback); // Optionally capture CCCD updates
 hrmc.begin();
 uint8_t hrmdata[2] = { 0b00000110, 0x40 }; // Set the characteristic to use 8-bit values, with the
sensor connected and detected
 hrmc.write(hrmdata, 2);

 // Configure the Body Sensor Location characteristic
 // See: https://www.bluetooth.com/specifications/gatt/viewer?
attributeXmlFile=org.bluetooth.characteristic.body_sensor_location.xml
 // Properties = Read
 // Min Len = 1
 // Max Len = 1
 // B0 = UINT8 - Body Sensor Location
 // 0 = Other

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 173 of 187

 // 0 = Other
 // 1 = Chest
 // 2 = Wrist
 // 3 = Finger
 // 4 = Hand
 // 5 = Ear Lobe
 // 6 = Foot
 // 7:255 = Reserved
 bslc.setProperties(CHR_PROPS_READ);
 bslc.setPermission(SECMODE_OPEN, SECMODE_NO_ACCESS);
 bslc.setFixedLen(1);
 bslc.begin();
 bslc.write8(2); // Set the characteristic to 'Wrist' (2)
}

void connect_callback(uint16_t conn_handle)
{
 // Get the reference to current connection
 BLEConnection* connection = Bluefruit.Connection(conn_handle);

 char central_name[32] = { 0 };
 connection->getPeerName(central_name, sizeof(central_name));

 Serial.print("Connected to ");
 Serial.println(central_name);
}

/**
 * Callback invoked when a connection is dropped
 * @param conn_handle connection where this event happens
 * @param reason is a BLE_HCI_STATUS_CODE which can be found in ble_hci.h
 */
void disconnect_callback(uint16_t conn_handle, uint8_t reason)
{
 (void) conn_handle;
 (void) reason;

 Serial.print("Disconnected, reason = 0x"); Serial.println(reason, HEX);
 Serial.println("Advertising!");
}

void cccd_callback(uint16_t conn_hdl, BLECharacteristic* chr, uint16_t cccd_value)
{
 // Display the raw request packet
 Serial.print("CCCD Updated: ");
 //Serial.printBuffer(request->data, request->len);
 Serial.print(cccd_value);
 Serial.println("");

 // Check the characteristic this CCCD update is associated with in case
 // this handler is used for multiple CCCD records.
 if (chr->uuid == hrmc.uuid) {
 if (chr->notifyEnabled(conn_hdl)) {
 Serial.println("Heart Rate Measurement 'Notify' enabled");
 } else {
 Serial.println("Heart Rate Measurement 'Notify' disabled");
 }
 }
}

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 174 of 187

void loop()
{
 digitalToggle(LED_RED);

 if (Bluefruit.connected()) {
 uint8_t hrmdata[2] = { 0b00000110, bps++ }; // Sensor connected, increment BPS value

 // Note: We use .notify instead of .write!
 // If it is connected but CCCD is not enabled
 // The characteristic's value is still updated although notification is not sent
 if (hrmc.notify(hrmdata, sizeof(hrmdata))){
 Serial.print("Heart Rate Measurement updated to: "); Serial.println(bps);
 }else{
 Serial.println("ERROR: Notify not set in the CCCD or not connected!");
 }
 }

 // Only send update once per second
 delay(1000);
}

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 175 of 187

Bluefruit LE Connect

The Bluefruit LE Connect app provides iOS devices with a variety of tools to communicate with Bluefruit LE devices,
such as the Circuit Playground Bluefruit! These tools cover basic communication and info reporting as well as more
project specific uses such as remote button control and a NeoPixel color picker.

The iOS app is a free download from Apple's App Store (https://adafru.it/ddu). As of this writing, it requires iOS 11.3 or
later and works on the iPhone, iPad, and iPod Touch.

Install Bluefruit LE
The first step is to install the app on your device.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 176 of 187

https://itunes.apple.com/us/app/adafruit-bluefruit-le-connect/id830125974?mt=8
https://learn.adafruit.com/assets/82470

Enable Bluetooth
If Bluetooth is disabled on your device, enable it by

going to Setting > Bluetooth on your iOS device and

then turning it on.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 177 of 187

https://learn.adafruit.com/assets/82469
https://learn.adafruit.com/assets/82471

Enable Location Services
If you plan to use the app to send location/GPS data to

Bluefruit LE, enable Location Services. Enable it on iOS

using Settings->Privacy->Location Services.

Scan for Devices

Launch the app now -- it will automatically begin to scan the airwaves for Bluetooth LE devices. These are presented in
a list at the bottom of the page.

Notice, you can use the Must have UART Service filter to prevent BLE devices from showing up that can't work with

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 178 of 187

https://learn.adafruit.com/assets/82472
https://learn.adafruit.com/assets/82473
https://learn.adafruit.com/assets/82474

the app.

To refresh the list and start a new scan, simply swipe down on the current list.
Each device's signal strength is displayed in the left side of its row.

If you tap on the device entry (not on Connect), you'll see more detail about a particular device:

Connect

Tap the Connect button on the UART capable device you wish to use. The app will connect to the Circuit Playground

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 179 of 187

Bluefruit! Now, you'll be presented with the Device name and signal strength, and a number of different Modules you
can use.

Controller Module

Click on the Controller module. You'll see a number of different sensor data streaming options. Enabling these will
allow you to send data from your phone, such as the Accelerometer data or Location data, directly to your Circuit
Playground Bluefruit!

The two modules on this page that can send data to the Circuit Playground Bluefruit are the Control Pad and Color
Picker.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 180 of 187

Color Picker

Click on the Color Picker. Now, you can dial in the hue, saturation, and value of a color using the color wheel and value
slider.

Follow this page (https://adafru.it/GcO) for setting up the CPB with the color picker code.

Press the Send selected color button and your color values will be sent to the Circuit Playground Bluefruit to adjust its
NeoPixels!

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 181 of 187

https://learn.adafruit.com/adafruit-circuit-playground-bluefruit/playground-color-picker

The app provides many other features with the additional modules. Have a look at the Bluefruit LE Connect for iOS and
Android standalone guide (https://adafru.it/GcP) for an explanation of each feature.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 182 of 187

https://learn.adafruit.com/bluefruit-le-connect/features

Downloads

Files:

Datasheet for Nordic nRF52840 (https://adafru.it/FKw)
Nordic InfoCenter for further documentation (https://adafru.it/FKx)
EagleCAD files for Circuit Playground Bluefruit on GitHub (https://adafru.it/FKy)
3D Models on GitHub (https://adafru.it/G4D)
Fritzing object in the Adafruit Fritzing Library (https://adafru.it/FKz)

Schematic for Circuit Playground Bluefruit

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 183 of 187

https://infocenter.nordicsemi.com/pdf/nRF52840_PS_v1.1.pdf
https://infocenter.nordicsemi.com/index.jsp
https://github.com/adafruit/Adafruit-Circuit-Playground-Bluefruit-PCB
https://github.com/adafruit/Adafruit_CAD_Parts/tree/master/4333%20Circuit%20Playground%20Bluefruit
https://github.com/adafruit/Fritzing-Library/blob/master/parts/Adafruit%20Circuit%20Playground%20Bluefruit.fzpz

Fab print of Circuit Playground Bluefruit

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 184 of 187

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 185 of 187

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 186 of 187

© Adafruit Industries Last Updated: 2020-05-15 03:55:15 PM EDT Page 187 of 187

	Guide Contents
	Overview
	Guided Tour
	Power and Data
	Micro B USB connector
	JST Battery Input

	Alligator/Croc Clip Pads
	Microchips
	LEDs
	Green ON LED
	Red #13 LED
	10 x Color NeoPixel LED

	Speaker
	Sensors
	Light Sensor
	Temperature Sensor
	Microphone Audio Sensor
	Motion Sensor
	Capacitive Touch

	Switches & Buttons
	Pinouts
	Power Pads
	Input/Output Pads
	Common to all pads

	Each Pin!
	Internally Used Pins!
	What is CircuitPython?
	CircuitPython is based on Python
	Why would I use CircuitPython?

	CircuitPython on Circuit Playground Bluefruit
	Install or Update CircuitPython
	Circuit Playground Bluefruit CircuitPython Libraries
	Installing CircuitPython Libraries on Circuit Playground Bluefruit
	Installing Mu Editor
	Download and Install Mu
	Using Mu
	Creating and Editing Code
	Creating Code
	Editing Code
	Your code changes are run as soon as the file is done saving.

	1. Use an editor that writes out the file completely when you save it.
	2. Eject or Sync the Drive After Writing
	Oh No I Did Something Wrong and Now The CIRCUITPY Drive Doesn't Show Up!!!

	Back to Editing Code...
	Exploring Your First CircuitPython Program
	Imports & Libraries
	Setting Up The LED
	Loop-de-loops
	What if I don't have the loop?

	More Changes
	Naming Your Program File
	Connecting to the Serial Console
	Are you using Mu?
	Setting Permissions on Linux

	Using Something Else?
	Interacting with the Serial Console
	The REPL
	Returning to the serial console
	CircuitPython Libraries
	Installing the CircuitPython Library Bundle
	Example Files

	Copying Libraries to Your Board
	Example: ImportError Due to Missing Library
	Library Install on Non-Express Boards
	Updating CircuitPython Libraries/Examples

	Frequently Asked Questions
	I have to continue using CircuitPython 3.x or 2.x, where can I find compatible libraries?
	Is ESP8266 or ESP32 supported in CircuitPython? Why not?
	How do I connect to the Internet with CircuitPython?
	Is there asyncio support in CircuitPython
	My RGB NeoPixel/DotStar LED is blinking funny colors - what does it mean?
	What is a MemoryError?
	What do I do when I encounter a MemoryError?
	Can the order of my import statements affect memory?
	How can I create my own .mpy files?
	How do I check how much memory I have free?
	Does CircuitPython support interrupts?
	Does Feather M0 support WINC1500?
	Can AVRs such as ATmega328 or ATmega2560 run CircuitPython?
	Commonly Used Acronyms

	CircuitPython Expectations
	Always Run the Latest Version of CircuitPython and Libraries
	I have to continue using CircuitPython 3.x or 2.x, where can I find compatible libraries?
	Switching Between CircuitPython and Arduino
	The Difference Between Express And Non-Express Boards
	Non-Express Boards: Gemma and Trinket
	Small Disk Space
	No Audio or NVM

	Differences Between CircuitPython and MicroPython
	Differences Between CircuitPython and Python
	Python Libraries
	Integers in CircuitPython
	Floating Point Numbers and Digits of Precision for Floats in CircuitPython
	Differences between MicroPython and Python

	Troubleshooting
	Always Run the Latest Version of CircuitPython and Libraries
	I have to continue using CircuitPython 3.x or 2.x, where can I find compatible libraries?
	CPLAYBOOT, TRINKETBOOT, FEATHERBOOT, or GEMMABOOT Drive Not Present
	You may have a different board.
	MakeCode
	Windows 10
	Windows 7
	MacOS

	Windows Explorer Locks Up When Accessing boardnameBOOT Drive
	Copying UF2 to boardnameBOOT Drive Hangs at 0% Copied
	CIRCUITPY Drive Does Not Appear
	Serial Console in Mu Not Displaying Anything
	CircuitPython RGB Status Light
	ValueError: Incompatible .mpy file.
	CIRCUITPY Drive Issues
	Easiest Way: Use storage.erase_filesystem()
	Old Way: For the Circuit Playground Express, Feather M0 Express, and Metro M0 Express:
	Old Way: For Non-Express Boards with a UF2 bootloader (Gemma M0, Trinket M0):
	Old Way: For non-Express Boards without a UF2 bootloader (Feather M0 Basic Proto, Feather Adalogger, Arduino Zero):

	Running Out of File Space on Non-Express Boards
	Delete something!
	Use tabs
	MacOS loves to add extra files.
	Prevent & Remove MacOS Hidden Files
	Copy Files on MacOS Without Creating Hidden Files
	Other MacOS Space-Saving Tips

	Uninstalling CircuitPython
	Backup Your Code

	Moving Circuit Playground Express to MakeCode
	Moving to Arduino
	Welcome to the Community!
	Adafruit Discord
	Adafruit Forums
	Adafruit Github
	ReadTheDocs

	CircuitPython Made Easy
	CircuitPython Playground
	CircuitPython Built-Ins
	Thing That Are Built In and Work
	Flow Control
	Math
	Tuples, Lists, Arrays, and Dictionaries
	Classes, Objects and Functions
	Lambdas
	Random Numbers

	CircuitPython Digital In & Out
	Going Beyond the Lesson!
	Experiment 1
	Experiment 2

	CircuitPython Analog In
	Creating an Analog Input
	GetVoltage Helper
	Main Loop

	CircuitPython Servo
	Servo Wiring
	Standard Servo Code
	Continuous Servo Code

	CircuitPython Audio Out
	Basic Tones
	Playing Audio Files
	CircuitPython Cap Touch
	Creating an capacitive touch input
	Main Loop
	Copper Foil Tape with Conductive Adhesive - 6mm x 15 meter roll
	Copper Foil Tape with Conductive Adhesive - 25mm x 15 meter roll
	Small Alligator Clip Test Lead (set of 12)

	Capacitive Touch and the Audio Pin on Circuit Playground Bluefruit

	CircuitPython NeoPixel
	CircuitPython DotStar
	Wire It Up
	The Code
	Create the LED
	DotStar Helpers
	Main Loop
	Is it SPI?
	Read the Docs

	CircuitPython UART Serial
	The Code
	Wire It Up
	Where's my UART?
	Trinket M0: Create UART before I2C

	CircuitPython I2C
	Wire It Up
	Find Your Sensor
	I2C Sensor Data
	Where's my I2C?

	CircuitPython HID Keyboard
	CircuitPython CPU Temp
	CircuitPython Storage
	Logging the Temperature

	Playground Temperature
	Playground Light Sensor
	Playground Drum Machine
	Playground Sound Meter
	Playground Color Picker
	The Code
	Playground Bluetooth Plotter
	The Code
	Arduino Support Setup
	1. BSP Installation
	Recommended: Installing the BSP via the Board Manager

	2. LINUX ONLY: adafruit-nrfutil Tool Installation
	3. Update the bootloader (nRF52832 ONLY)
	Advanced Option: Manually Install the BSP via 'git'
	Adafruit nRF52 BSP via git (for core development and PRs only)

	Arduino BLE Examples
	Example Source Code
	Documented Examples
	Advertising: Beacon
	Complete Code
	Output
	BLE UART: Controller
	Setup
	Complete Code
	Custom: HRM
	HRM Service Definition
	Implementing the HRM Service and Characteristics
	Service + Characteristic Setup Code Analysis

	Full Sample Code
	Bluefruit LE Connect
	Install Bluefruit LE
	Enable Bluetooth
	Enable Location Services
	Scan for Devices
	Connect
	Controller Module
	Color Picker

	Downloads
	Files:

	Schematic for Circuit Playground Bluefruit
	Fab print of Circuit Playground Bluefruit

