ﬁ adafruit learning system

i Co-Processor

Adafruit AirLift Shield - ESP32 Wi

* adafruit learning system
Overview

Give your Arduino project a /ift with the Adafruit AirLift Shield (https://adafru.it/F6v) - a shield that lets you use the
powerful ESP32 as a WiFi co-processor. You probably have your favorite Arduino-compatible (like the Metro

M4 (https://adafru.it/ASS) or the classic Metro 328 (https://adafru.ittMETROXMETR)) that comes with its own set of
awesome peripherals and lots of libraries. But it doesn't have WiFi built in! So let's give that chip a best friend, the
ESP32. This chip can handle all the heavy lifting of connecting to a WiFi network and transferring data from a site, even
if it's using the latest TLS/SSL encryption (it has root certificates pre-burned in).

]
=

1

o]
]

(o]

OrosIO O

000000000000 =00
000000000000 «0O0e
000000000000 00
000000000000
000000000000
000000000000
ISR 000000000000
zon e e BEE OrOOIOOIOIOIOIOIOIOID 8vo
o SAE O1O1I0I0IOIOIOIOIOIOIOID 3.3u
~§00000000 000000/

=% 10 3By GrdUin B 123458
Oon(é)TOOOOO 000000

Analoa In

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 3 of 53

https://www.adafruit.com/product/4285
https://www.adafruit.com/product/3382
https://www.adafruit.com/product/2488
https://learn.adafruit.com/assets/74345
https://learn.adafruit.com/assets/74351
https://learn.adafruit.com/assets/74349
https://learn.adafruit.com/assets/74355
https://learn.adafruit.com/assets/74356
https://learn.adafruit.com/assets/74357
https://learn.adafruit.com/assets/74359
https://learn.adafruit.com/assets/74358
https://learn.adafruit.com/assets/74362
https://learn.adafruit.com/assets/74361

Having WiFi managed by a separate chip means your code is simpler, you don't have to cache socket data, or compile
in & debug an SSL library. Send basic but powerful socket-based commands over 8MHz SPI for high speed data
transfer. You can use any 3V or 5V Arduino, any chip from the ATmega328 and up (although the '328 will not be able
to do very complex tasks or buffer a lot of data). It also works great with CircuitPython, a SAMD51/Cortex M4 minimum
required since we need a bunch of RAM. All you need is the SPI bus and 2 control pins plus a power supply that can
provide up to 250mA during WiFi usage.

We placed an ESP32 module on a shield with a separate 3.3V regulator, and a tri-state chip for MOSI so you can share
the SPI bus with other shields. We also tossed on a micro SD card socket, you can use that to host or store data you
get from the Internet. Arduinos based on the ATmega328 (like the UNO) cannot use both the WiFi module and SD
library at the same time, they don't have enough RAM. Again, we recommend an MO or M4 chipset for use with
Arduino, M4 for CircuitPython!

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 4 of 53

}

000000000000 OO0
000000000000 00
000000000000 00
000000000000
000000000000
000000000000
000000000000
OOOOMOIOIOOIOIOOD snvo
BEA O10IOIOIOIOIOIOIOIION0 3.3y

TrE90909900 oooooo

3v Sv Gnd Uin

'oooooooo oooooo

Analea In

Comes fully assembled and tested, pre-programmed with ESP32 SPI WiFi co-processor firmware thatyou can use in
CircuitPython to use this into WiFi co-processsor (https://adafru.it/Evl). We also include some header so you can solder
it in and plug right into your Arduino-compatible, but you can also pick up a set of stacking headers to stack
above/below your board.

‘00000000 0000000000

LA

OOC000000000

O-0-0-C-0-0-C00000
000000000000
000000000000

00000000000
000000000000
000000000000 2
000000000000 WIE336755
000000000000 6C— 2x 94\(_0
SO0000000000

000000000000
000000 00000000

000000 Q0000000

We've tested this with all our Metros and it should work just fine with them except the Metro M4

Airlifts (https://adafru.it/F60) (because they already have WiFi!). For use in Arduino, the '328 and '32u4 you can do basic
connectivity and data transfer but they do not have a lot of RAM so we don't recommend them - use the Metro MO, M4

or similar, for best results! For CircuitPython use, a Metro M4 works best - the MO series does not have enough RAM in

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 5 of 53

https://github.com/ladyada/Adafruit_CircuitPython_ESP32SPI
https://www.adafruit.com/product/4000

CircuitPython.

The firmware on board is a slight variant of the Arduino WiFiNINA core, which works great! (https://adafru.it/E70) At this
time connection to Enterprise WiFi is not yet supported.

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 6 of 53

https://github.com/adafruit/nina-fw

Pinouts ﬁ adafruit learning system

I BUSYEG RST SD RX TX

000033
® Adafruit AirLift WiFi Shield @

- -y OrOIOIOIOIOIOIOIOOIOID) .01)

eensmsemtarmet. * QIOIOIOIOIOIOIOIOIOIOINGND
000000000000 eO 0O

000000000000 #00e
000000000000 0O
000000000000
000000000000
000000000000
000000000000
OrOOIOOICIOIOIOIOIOID 8vo
O101010OIOIOIOIOIOIOID 3.3u
i" —BOOOOOOOO 000000

3v Sv Gnd Vin 3 458,

00000000 000000

Analog In

 Ssazssmssw

There's a lot jam-packed into this shield! Let's take a look at what we've got going on.

Power Pins

000000000C

o
o
o
o
(o
o
(o]
="
0

=
(=]
=

020 00000000084

[0)
20 O
020

® GND .- Cammnn nnwar/lanic aranind

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 7 of 53

C Cite CUnun pUYrC Ui gt o e

® 3V - this is the output from the 3.3V regulator. The regulator can supply 500mA peak but half of that is drawn by
the ESP32, and it's a fairly power-hungry chip.

® 5V - This is the input to the regulator

® |Or - This is IORef, the IO voltage we will communicate with and is required.

SPI Interface Pins

...
=
-

OnosiQ EOE

00500 507
OwO‘a'

Ock Q50| |
QniscQE 05

]F,H,il EU

Adafruit AirLift WiFi Shield @
v OOIOIOIOICIOIIOIOINOS.2)
Lo OIOIOIOIOIOIOIOIOIOIOIOGND '
000000000000 eOO
000000000000 e0O0e
000000000000 OO0
000000000000
000000000000
000000000000
000000000000
O1O10101010101I0IOIOIOID 6ND
O1010101010101010101010 3.3V

00000000 000000/

10r 3v S5v Gnd Vin 8 1 2 3 4 5@,

"00000000 000000

RST— Analoa In

Both ESP32 and SD card use SPI to send and receive data. These pins are labeled CLK MISO MOSI and have level
shifting so you can use this shield with 3.3V or 5V microcontroller boards.

By default the 2x3 pin ICSP header on the right hand side is where the SPI signals are found.

ESP32 Control Pins

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 8 of 53

:é.

Bo
oio*g
0350

oaxOf

of

jo?

O 0f
o

LT

Omso0 B0
OmesiQ 2O
QcseQ 50T

Adafruit AirLift HiFi Shield @

()]

osin'c
« ITTTTIT
=]

im
:ggl
3

e LEOnEu

Q0
00
Q0

000000000000
000000000000
000000000000
OO0 OO swa
OO OO0 2. 3u

:"ZEOOOODDDO Q00000

= IOr Iv Bv Gnd Uin @ 1 2 3 4+ 88
DDEDGGOG QOO000

Aralag In

SD Card Interface

000 =00

© Adafruit Industries

https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor

Required Control Pins:

® BUSY - this pin is an input from the AirLift, it will let
us know when its ready for more commands to be
sent. This is 3.3V logic out, can be read by 3-5V
logic. This pin must be connected.

® RST- this pin is an output to the AirLift. Set low to
put the AirLift into reset. You should use this pin,
even though you might be able to run for a short
while without it, it's essential to 'kick' the chip if it
ever gets into a locked up state. Level shifted so
can be 3-5V logic

Optional Control Pins:

® GPIOO - this is the ESP32 GPIOO pin, which is
used to put it into bootloading mode. It is also
used if you like when the ESP32 is acting as a
server, to let you know data is ready for reading.
It's not required, you'll need to solder the pad on
the bottom of the shield to connect it.

® RX & TX - Serial data in and Serial data out, used
for bootloading new firmware only. Leave
disconnected when not uploading new WiFi
firmware to the AirLift (which is a rare occurrence).
You'll need to solder the two pads on the bottom
of the shield to use these pins.

There's a lot of space available on this shield so we also
stuck on a micro SD card holder, great for datalogging
or storing data to transmit over WiFi.

In addition to the shared SPI pins, the SD (chip select)
pin is also used. It can be re-assigned to any pin by
cutting the trace underneath the board and rewiring. If
the SD card is not used, the SD pin can be used for any
other purpose

Page 9 of 53

https://learn.adafruit.com/assets/77288
https://learn.adafruit.com/assets/77218

There is a small RGB LED to the left of the ESP32. These
RGB LEDs are available in the Arduino and CircuitPython
libraries if you'd like to PWM them for a visual alert.
They're connected to the ESP32's pins 26 (Red), 25
(Green), and 27 (Blue).

0000000 *00
Q000000 »O0=

ansamsasaw

B L e g
L]

= = 1 e
EST00000000 000000

v S uin 5.
I DOGDDG'DCI DGC:IOIED

]
o

Prototyping Area

We have a big grid of prototyping holes and power rails
if you want to make some custom circuitry!

sLele e e 0 e el 0o
D O "!C!Iji:lﬁ{h':-'".i .

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 10 of 53

https://learn.adafruit.com/assets/77216
https://learn.adafruit.com/assets/77215

ﬁ adafruit learning system
Assembly

® adafruit AirLift HiFi Shield @

l- -w QIOIOIOIOIOIOIOIOIOIOID 520 |)
1 QIO OIS0
000000000000 #O0 e
000000000000 #00s =
000000000000 0Q =
000000000000
000000000000
000000000000
000000000000
O1OOOIONOIOIOIOION OO 6o
O10IOIOIOIOIOIOIOIOIOIO 3.3y

EZTEC0000000 000000
00000000 000000

aloa In

Installing Standard Headers

The shield comes with 0.1" standard header. Standard header does not permit stacking but it is mechanically stronger
and they're much less expensive too! If you want to stack a shield on top, do not perform this step as it is not possible
to uninstall the headers once soldered in! Skip down to the bottom for the stacking tutorial

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 11 of 53

Break apart the 0.1" header into 6, 8 and/or 10-pin long

o pieces and slip the long ends into the headers of your
A I Arduino.
seccoocscooe
T
44

J]
J

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 12 of 53

https://learn.adafruit.com/assets/77253
https://learn.adafruit.com/assets/77254

Place the assembled shield on top of the header-ed
Arduino so that all of the short parts of the header are
sticking through the outer set of pads

AARRARAN

Solder each one of the pins into the shield to make a
secure connection

A T

OL000000000

O
= DO0000000000

,F YOO000000000| [* = I
00000000000 | st
07 100000000000 e

00
00

"\

JOfZe 0000000000
g0 DDOOO00000

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 13 of 53

https://learn.adafruit.com/assets/77255
https://learn.adafruit.com/assets/77257
https://learn.adafruit.com/assets/77258

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 14 of 53

https://learn.adafruit.com/assets/77259
https://learn.adafruit.com/assets/77261

That's it' Now you can install the 2x3 header

.aaoe&a eamidaéét,l

gelslialalalalela slslale]

fH.,‘\'CH}O{}O{}OO{}d..
'OC"DDUD

Solder the 2x3 header so that it's pointing downwards

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 15 of 53

https://learn.adafruit.com/assets/77262
https://learn.adafruit.com/assets/77263

o000Q0O000000
Q00000000000
Q00000000000
Q0000000000
o0

>00000000

'I.:"t."QDOO
OU 0000

Mo,
ne"s)

PIa1ys

Stack Alert!

If you want to stack a shield on top of the WiFi Shield, you'll want to pick up some stacking headers and use those
instead of the plain header shown here!

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 16 of 53

https://learn.adafruit.com/assets/77264
https://learn.adafruit.com/assets/77265
https://learn.adafruit.com/assets/77266

Wanna stack? This tutorial shows how to use the plain
header to connect to an Arduino. If you want to use
stacking headers (https://adafru.it/dsu), don't follow
these steps!

Start by sliding the 10 pin, 2 x 8 pin and 6-pin stacking

ODOO0000 B66GGG headers into the outer rows of the shield from the top.
Qoo0oQOO0Q OOOOOE@

Then flip the board over so its resting on the four
headers. Pull on the legs if necessary to straighten them
out.

Tack one pin of each header, to get them set in place
] HH00000 866G before more soldering. If the headers go crooked you

fooo0qe0e 0000 can re-heat the one pin while re-positioning to straighten
them up

|

0000
elalslele]
CoO00000
o0oO0000
JO0O00000

|

0000000
000000
CoO00000
Q000000
0000000
0000000

Once you've tacked and straightened all the headers,
go back and solder the remaining pins for each header.

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 17 of 53

https://learn.adafruit.com/assets/77267
https://learn.adafruit.com/assets/77268
https://www.adafruit.com/product/85
https://learn.adafruit.com/assets/77269
https://learn.adafruit.com/assets/77270

ﬁﬁ“}:ﬂo 0 O ’ 0

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 18 of 53

https://learn.adafruit.com/assets/77271
https://learn.adafruit.com/assets/77272
https://learn.adafruit.com/assets/77273

w5 Al e Y
- Y W E o
00000000 onnnpq’
o0CCoCo0ooo0 |
0COCOCOO0000
000000000000
000000000000
000000000000

Insert the 2x3 stacking header as shown.

Solder into place.

¢ goggoeve

1."1.IUI

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 19 of 53

https://learn.adafruit.com/assets/77274
https://learn.adafruit.com/assets/77275
https://learn.adafruit.com/assets/77276

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 20 of 53

https://learn.adafruit.com/assets/77277
https://learn.adafruit.com/assets/77278
https://learn.adafruit.com/assets/77279

* adafruit learning system

CircuitPython

It's easy to use Adafruit AirLift with CircuitPython and the Adafruit CircuitPython
ESP32SPI (https://adafru.it/DWV) module. This module allows you to easily add WiFi to your project.

|:| The ESP32SPI library requires an M4 or better microcontroller! The MO will not work.

CircuitPython Microcontroller Pinout
To use the board's pins with the AirLift shield, copy the following lines into your code:
esp32 cs = DigitalInOut(board.D10)

esp32 ready = DigitalInOut(board.D7)
esp32 reset = DigitalInOut(board.D5)

If you wish to use the GPIOO pin on the ESP32 - solder the jumper on the back of the shield, highlighted below:

'00000000 0000000000!

g e -

.
-
v

000000000000

000000000000
000000000000
000000000000
000000000000
000000000000 ' :
000000000000 SBE336755
000000000000 6C-
000000000000 :
\M000000 00000000
1000000 00000000

Then, include the following code to use the pin:
esp32 gpio® = DigitalInOut(board.D6)

CircuitPython Installation of ESP32SPI Library

You'll need to install the Adafruit CircuitPython ESP32SPI (https://adafru.it/DWV) library on your CircuitPython board.

First make sure you are running the latest version of Adafruit CircuitPython (https://adafru.it/Amd) for your board.

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 21 of 53

https://github.com/adafruit/Adafruit_CircuitPython_ESP32SPI
https://github.com/adafruit/Adafruit_CircuitPython_ESP32SPI
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython

Next you'll need to install the necessary libraries to use the hardware--carefully follow the steps to find and install these
libraries from Adafruit's CircuitPython library bundle (https://adafru.it/uap). Our CircuitPython starter guide has a great
page on how to install the library bundle (https://adafru.it/ABU).

You can manually install the necessary libraries from the bundle:

® adafruit_esp32spi.mpy
® adafruit_requests.mpy
® adafruit_bus_device

Before continuing make sure your board's lib folder or root filesystem has the adafruit_esp32spi.mpy, and
adafruit_bus_device files and folders copied over.

Next connect to the board's serial REPL (https://adafru.it/Awz) so you are at the CircuitPython >>> prompt.

CircuitPython Usage

Copy the following code to your code.py file on your microcontroller:

import board
import busio
from digitalio import DigitalInOut

from adafruit esp32spi import adafruit esp32spi
print("ESP32 SPI hardware test")

esp32 cs = DigitalInQut(board.D10)

esp32 ready = DigitalInOut(board.D7)

esp32 reset = DigitalInOut(board.D5)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)
esp = adafruit esp32spi.ESP_SPIcontrol(spi, esp32 cs, esp32 ready, esp32 reset)

if esp.status == adafruit_esp32spi.WL_IDLE STATUS:
print("ESP32 found and in idle mode")

print("Firmware vers.", esp.firmware version)

print("MAC addr:", [hex(i) for i in esp.MAC address])

for ap in esp.scan networks():
print ("\t%s\t\tRSSI: %d" % (str(ap['ssid'], 'utf-8'), apl['rssi'l))

print("Done!")

Connect to the serial monitor to see the output. It should look something like the following:

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 22 of 53

https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com/welcome-to-circuitpython/the-repl

Make sure you see the same output! If you don't, check your wiring. Note that we've changed the pinout in the code
example above to reflect the CircuitPython Microcontroller Pinout at the top of this page.

Once you've succeeded, continue onto the next page!

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 23 of 53

ﬁ adafruit learning system
Internet Connect!

Once you have CircuitPython setup and libraries installed we can get your board connected to the Internet.

To get connected, you will need to start by creating a secrets file.

What's a secrets file?

We expect people to share tons of projects as they build CircuitPython WiFi widgets. What we want to avoid is people
accidentally sharing their passwords or secret tokens and API keys. So, we designed all our examples to use a
secrets.py file, that is in your CIRCUITPY drive, to hold secret/private/custom data. That way you can share your main
project without worrying about accidentally sharing private stuff.

Your secrets.py file should look like this:

This file is where you keep secret settings, passwords, and tokens!
If you put them in the code you risk committing that info or sharing it

secrets = {
'ssid' : 'home ssid',
'password' : 'my password',
"timezone' : "America/New York", # http://worldtimeapi.org/timezones
'github token' : 'fawfj23rakjnfawiefa',
"hackaday token' : 'h4xxOrs3kret',
}

Inside is a python dictionary named secrets with a line for each entry. Each entry has an entry name (say 'ssid') and
then a colon to separate it from the entry key 'home ssid' and finally a comma,

At a minimum you'll need the ssid and password for your local WiFi setup. As you make projects you may need more
tokens and keys, just add them one line at a time. See for example other tokens such as one for accessing github or
the hackaday API. Other non-secret data like your timezone can also go here, just cause its called secrets doesn't
mean you can't have general customization data in there!

For the correct time zone string, look at http://worldtimeapi.org/timezones (https://adafru.it/EcP) and remember that if
your city is not listed, look for a city in the same time zone, for example Boston, New York, Philadelphia, Washington
DC, and Miami are all on the same time as New York.

Of course, don't share your secrets.py - keep that out of GitHub, Discord or other project-sharing sites.

Connect to WiFi

OK now you have your secrets setup - you can connect to the Internet using the ESP32SPI and the Requests modules.
First make sure you are running the latest version of Adafruit CircuitPython (https://adafru.it/Amd) for your board.

Next you'll need to install the necessary libraries to use the hardware--carefully follow the steps to find and install these
libraries from Adafruit's CircuitPython library bundle (https://adafru.it/zdx). Our introduction guide has a great page on

how to install the library bundle (https://adafru.it/ABU) for both express and non-express boards.

Remember for non-express boards like the, you'll need to manually install the necessary libraries from the bundle:

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 24 of 53

http://worldtimeapi.org/timezones
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython
https://github.com/adafruit/Adafruit_CircuitPython_Bundle
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries

adafruit_bus_device
adafruit_esp32_spi
adafruit_requests
neopixel

Before continuing make sure your board's lib folder or root filesystem has the above files copied over.
Next connect to the board's serial REPL (https://adafru.it/Awz) so you are at the CircuitPython >>> prompt.

Into your lib folder. Once that's done, load up the following example using Mu or your favorite editor:

import board

import busio

from digitalio import DigitalInOut

import adafruit esp32spi.adafruit esp32spi socket as socket
from adafruit esp32spi import adafruit esp32spi

import adafruit requests as requests

print("ESP32 SPI webclient test")

TEXT_URL "http://wifitest.adafruit.com/testwifi/index.html"
JSON _URL = "http://api.coindesk.com/v1l/bpi/currentprice/USD.json"

If you are using a board with pre-defined ESP32 Pins:
esp32 cs = DigitalInOQut(board.ESP CS)

esp32 ready = DigitalInOut(board.ESP BUSY)

esp32 reset = DigitalInOut(board.ESP RESET)

If you have an ItsyBitsy Airlift:
esp32 cs = DigitalInOut(board.D13)
esp32 ready = DigitalInOut(board.D11)
esp32 reset = DigitalInOut(board.D12)

H H R B

If you have an externally connected ESP32:
esp32 cs = DigitalInOut(board.D9)

esp32 ready = DigitalInOut(board.D10)
esp32 reset = DigitalInOut(board.D5)

H* B H B

busio.SPI(board.SCK, board.MOSI, board.MISO)
adafruit esp32spi.ESP SPIcontrol(spi, esp32 cs, esp32 ready, esp32 reset)

spi
esp

requests.set socket(socket, esp)

if esp.status == adafruit_esp32spi.WL_IDLE STATUS:
print("ESP32 found and in idle mode")

print("Firmware vers.", esp.firmware version)

print("MAC addr:", [hex(i) for i in esp.MAC address])

for ap in esp.scan networks():
print("\t%s\t\tRSSI: %d" % (str(ap["ssid"], "utf-8"), ap["rssi"]))

print("Connecting to AP...")
while not esp.is connected:
try:
esp.connect AP(b"MY SSID NAME", b"MY SSID PASSWORD")
except RuntimeError as e:
print("could not connect to AP. retrvina: ". e)

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor

Page 25 of 53

https://learn.adafruit.com/welcome-to-circuitpython/the-repl

continue
print("Connected to", str(esp.ssid, "utf-8"), "\tRSSI:", esp.rssi)
print("My IP address is", esp.pretty ip(esp.ip address))
print(
"IP lookup adafruit.com: %s" % esp.pretty ip(esp.get host by name("adafruit.com"))

)

print("Ping google.com: %d ms" % esp.ping("google.com"))

esp. debug = True

print("Fetching text from", TEXT URL)
r = requests.get(TEXT URL)

print("-" * 40)

print(r.text)

print("-" * 40)

r.close()

print()

print("Fetching json from", JSON URL)
r = requests.get(JSON URL)

print("-" * 40)

print(r.json())

print("-" * 40)

r.close()

print("Done!")

And save it to your board, with the name code.py .

|:| You may need to change the esp32_cs, esp32_ready and esp32_reset pins in the code to match your

hardware's pinout.

Then go down to this line

esp.connect_AP(b'MY_SSID_NAME', b'MY_SSID_PASSWORD')
and change MY _SSID_NAME and MY_SSID PASSWORD to your access point name and password, keeping them

within the " quotes. (This example doesn't use the secrets' file, but its also very stand-alone so if other things seem to
not work you can always re-load this. You should get something like the following:

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 26 of 53

EP COMGT - PuTTV - | X

In order, the example code...

Initializes the ESP32 over SPI using the SPI port and 3 control pins:

esp32 cs = DigitalInQOut(board.ESP CS)
esp32 ready = DigitalInOut(board.ESP BUSY)
esp32 reset = DigitalInOut(board.ESP RESET)

spi busio.SPI(board.SCK, board.MOSI, board.MISO)
esp = adafruit esp32spi.ESP SPIcontrol(spi, esp32 cs, esp32 ready, esp32 reset)

Tells our requests library the type of socket we're using (socket type varies by connectivity type - we'll be using the
adafruit_esp32spi_socket for this example). We'll also set the interface to an esp object. This is a little bit of a hack,
but it lets us use requests like CPython does.

requests.set socket(socket, esp)

Verifies an ESP32 is found, checks the firmware and MAC address

if esp.status == adafruit_esp32spi.WL_IDLE STATUS:
print("ESP32 found and in idle mode")

print("Firmware vers.", esp.firmware version)

print("MAC addr:", [hex(i) for i in esp.MAC address])

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 27 of 53

Performs a scan of all access points it can see and prints out the name and signal strength:

for ap in esp.scan networks():
print("\t%s\t\tRSSI: %d" % (str(ap['ssid'], 'utf-8'), apl['rssi'l))

Connects to the AP we've defined here, then prints out the local IP address, attempts to do a domain name lookup and
ping google.com to check network connectivity (note sometimes the ping fails or takes a while, this isn't a big deal)

print("Connecting to AP...")
esp.connect AP(b'MY SSID NAME', b'MY SSID PASSWORD')
print("Connected to", str(esp.ssid, 'utf-8'), "\tRSSI:", esp.rssi)
print("My IP address is", esp.pretty ip(esp.ip address))
print("IP lookup adafruit.com: %s" % esp.pretty ip(esp.get host by name("adafruit.com")))
print("Ping google.com: %d ms" % esp.ping("google.com"))

OK now we're getting to the really interesting part. With a SAMD51 or other large-RAM (well, over 32 KB) device, we can
do a lot of neat tricks. Like for example we can implement an interface a lot like requests (https://adafru.it/E9o) - which
makes getting data really really easy

To read in all the text from a web URL call requests.get - you can pass in https URLs for SSL connectivity

TEXT URL = "http://wifitest.adafruit.com/testwifi/index.html"
print("Fetching text from", TEXT URL)

r = requests.get(TEXT URL)

print('-'*40)

print(r.text)

print('-"'*40)

r.close()

Or, if the data is in structured JSON, you can get the json pre-parsed into a Python dictionary that can be easily queried
or traversed. (Again, only for nRF52840, M4 and other high-RAM boards)

JSON URL = "http://api.coindesk.com/v1l/bpi/currentprice/USD.json"
print("Fetching json from", JSON URL)

r = requests.get(JSON URL)

print('-"'%*40)

print(r.json())

print('-'*40)

r.close()

Requests

We've written a requests-like (https://adafru.it/FpT) library for web interfacing
named Adafruit_CircuitPython_Requests (https://adafru.it/FpW). This library allows you to send HTTP/1.1 requests
without "crafting" them and provides helpful methods for parsing the response from the server.

Here's an example of using Requests to perform GET and POST requests to a server.

adafruit requests usage with an esp32spi socket
import board

[N R

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 28 of 53

http://docs.python-requests.org/en/master/
https://2.python-requests.org/en/master/
https://github.com/adafruit/Adafruit_CircuitPython_Requests

Lmporcu obus1io

from digitalio import DigitalInOut

import adafruit esp32spi.adafruit esp32spi socket as socket
from adafruit esp32spi import adafruit esp32spi

import adafruit requests as requests

If you are using a board with pre-defined ESP32 Pins:
esp32 cs = DigitalInOut(board.ESP CS)

esp32 ready = DigitalInOut(board.ESP BUSY)

esp32 reset = DigitalInOut(board.ESP RESET)

If you have an externally connected ESP32:
esp32_cs = DigitalInOut(board.D9)

esp32 ready = DigitalInOut(board.D10)

esp32 reset = DigitalInOut(board.D5)

busio.SPI(board.SCK, board.MOSI, board.MISO)
adafruit esp32spi.ESP_SPIcontrol(spi, esp32 cs, esp32 ready, esp32 reset)

spi
esp

print("Connecting to AP...")
while not esp.is connected:
try:
esp.connect AP(b"MY SSID NAME", b"MY SSID PASSWORD")
except RuntimeError as e:
print("could not connect to AP, retrying:
continue
print("Connected to", str(esp.ssid, "utf-8"), "\tRSSI:", esp.rssi)

, e)

Initialize a requests object with a socket and esp32spi interface
requests.set socket(socket, esp)

TEXT URL = "http://wifitest.adafruit.com/testwifi/index.html"
JSON GET URL = "http://httpbin.org/get"
JSON POST URL = "http://httpbin.org/post"

print("Fetching text from %s" % TEXT URL)
response = requests.get(TEXT URL)
print("-" * 40)

print("Text Response: ", response.text)
print("-" * 40)

response.close()

print("Fetching JSON data from %s" % JSON GET URL)
response = requests.get(JSON GET URL)
print("-" * 40)

print("JSON Response: ", response.json())
print("-" * 40)
response.close()

data = "31F"

print("P0OSTing data to {0}: {1}".format(JSON POST URL, data))
response = requests.post(JSON POST URL, data=data)

print("-" * 40)

json resp = response.json()

Parse out the 'data' key from json resp dict.
print("Data received from server:", json resp["data"])
print("-" * 40)

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor

Page 29 of 53

response.close()

json data = {"Date": "July 25, 2019"}

print("P0OSTing data to {0}: {1}".format(JSON POST URL, json data))
response = requests.post(JSON POST URL, json=json data)

print("-" * 40)

json resp = response.json()

Parse out the 'json' key from json resp dict.

print("JSON Data received from server:", json resp["json"])
print("-" * 40)

response.close()

The code first sets up the ESP32SPI interface. Then, it initializes a request object using an ESP32 socket and the
esp object.

import board

import busio

from digitalio import DigitalInOut

import adafruit esp32spi.adafruit esp32spi socket as socket
from adafruit esp32spi import adafruit esp32spi

import adafruit requests as requests

If you have an externally connected ESP32:
esp32 cs = DigitalInOut(board.D9)

esp32 ready = DigitalInOut(board.D10)

esp32 reset = DigitalInOut(board.D5)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)
esp = adafruit esp32spi.ESP _SPIcontrol(spi, esp32 cs, esp32 ready, esp32 reset)

print("Connecting to AP...")
while not esp.is connected:
try:
esp.connect AP(b'MY SSID NAME', b'MY SSID PASSWORD')
except RuntimeError as e:
print("could not connect to AP, retrying:
continue
print("Connected to", str(esp.ssid, 'utf-8'), "\tRSSI:", esp.rssi)

,€)

Initialize a requests object with a socket and esp32spi interface
requests.set socket(socket, esp)

Make sure to set the ESP32 pinout to match your AirLift breakout's connection:

esp32 cs = DigitalInOut(board.D9)
esp32 ready = DigitalInOut(board.D10)
esp32 reset = DigitalInOut(board.D5)

HTTP GET with Requests

The code makes a HTTP GET request to Adafruit's WiFi testing website
- http://wifitest.adafruit.com/testwifi/index.html (https://adafru.it/FpZ).

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 30 of 53

http://wifitest.adafruit.com/testwifi/index.html

To do this, we'll pass the URL into requests.get() . We're also going to save the response from the server into a
variable named response .

While we requested data from the server, we'd what the server responded with. Since we already saved the
server's response , we can read it back. Luckily for us, requests automatically decodes the server's response into
human-readable text, you can read it back by calling response.text .

Lastly, we'll perform a bit of cleanup by calling response.close() . This closes, deletes, and collect's the response's
data.

print("Fetching text from %s"%TEXT URL)
response = requests.get(TEXT URL)
print('-'*40)
print("Text Response: ", response.text)
print('-'*40)
response.close()

While some servers respond with text, some respond with json-formatted data consisting of attribute—value pairs.
CircuitPython_Requests can convert a JSON-formatted response from a server into a CPython dict. object.

We can also fetch and parse json data. We'll send a HTTP get to a url we know returns a json-formatted response
(instead of text data).

Then, the code calls response.json() to convert the response to a CPython dict.

print("Fetching JSON data from %s"%JSON GET URL)
response = requests.get(JSON GET URL)
print('-"'*40)

print("JSON Response: ", response.json())
print('-"'%*40)
response.close()

HTTP POST with Requests

Requests can also POST data to a server by calling the requests.post method, passing it a data value.

data = '31F'

print("P0STing data to {0}: {1}".format(JSON POST URL, data))
response = requests.post(JSON POST URL, data=data)
print('-"'%*40)

json resp = response.json()

Parse out the 'data' key from json resp dict.
print("Data received from server:", json resp['data'])
print('-'*40)

response.close()

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 31 of 53

You can also post json-formatted data to a server by passing json data into the requests.post method.

json data = {"Date" : "July 25, 2019"}

print("P0OSTing data to {0}: {1}".format(JSON POST URL, json data))
response = requests.post(JSON POST URL, json=json data)
print('-"'*40)

json resp = response.json()
Parse out the 'json' key from json resp dict.
print("JSON Data received from server:", json resp['json'])

print('-'*40)
response.close()

Advanced Requests Usage

Want to send custom HTTP headers, parse the response as raw bytes, or handle a response's http status code in your
CircuitPython code?

We've written an example to show advanced usage of the requests module below.

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 32 of 53

import board

import busio

from digitalio import DigitalInOut

import adafruit esp32spi.adafruit esp32spi socket as socket
from adafruit esp32spi import adafruit esp32spi

import adafruit requests as requests

If you are using a board with pre-defined ESP32 Pins:
esp32 cs = DigitalInOQut(board.ESP CS)

esp32 ready = DigitalInOut(board.ESP BUSY)

esp32 reset = DigitalInOut(board.ESP RESET)

If you have an externally connected ESP32:
esp32 cs = DigitalInOut(board.D9)

esp32 ready = DigitalInOut(board.D10)

esp32_reset = DigitalInOut(board.D5)

spi
esp

busio.SPI(board.SCK, board.MOSI, board.MISO)
adafruit esp32spi.ESP _SPIcontrol(spi, esp32 cs, esp32 ready, esp32 reset)

print("Connecting to AP...")
while not esp.is connected:
try:
esp.connect AP(b"MY SSID NAME", b"MY SSID PASSWORD")
except RuntimeError as e:
print("could not connect to AP, retrying: ", e)
continue
print("Connected to", str(esp.ssid, "utf-8"), "\tRSSI:", esp.rssi)

Initialize a requests object with a socket and esp32spi interface
requests.set socket(socket, esp)

JSON GET URL = "http://httpbin.org/get"

Define a custom header as a dict.
headers = {"user-agent": "blinka/1.0.0"}

print("Fetching JSON data from %s..." % JSON GET URL)
response = requests.get(JSON GET URL, headers=headers)
print("-" * 60)

json data = response.json()

headers = json data["headers"]

print("Response's Custom User-Agent Header: {0}".format(headers["User-Agent"]))
print("-" * 60)

Read Response's HTTP status code
print("Response HTTP Status Code: ", response.status code)

print("-" * 60)

Read Response, as raw bytes instead of pretty text
print("Raw Response: ", response.content)

Close, delete and collect the response data
response.close()

WiFi Manager

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor

Page 33 of 53

That simpletest example works but its a little finicky - you need to constantly check WiFi status and have many loops to
manage connections and disconnections. For more advanced uses, we recommend using the WiFiManager object. It
will wrap the connection/status/requests loop for you - reconnecting if WiFi drops, resetting the ESP32 if it gets into a
bad state, etc.

Here's a more advanced example that shows the WiFi manager and also how to POST data with some extra headers:

import time

import board

import busio

from digitalio import DigitalInOut

import neopixel

from adafruit esp32spi import adafruit esp32spi

from adafruit esp32spi import adafruit esp32spi wifimanager

print("ESP32 SPI webclient test")

Get wifi details and more from a secrets.py file

try:
from secrets import secrets

except ImportError:
print("WiFi secrets are kept in secrets.py, please add them there!")
raise

If you are using a board with pre-defined ESP32 Pins:
esp32 cs = DigitalInOQut(board.ESP CS)

esp32 ready = DigitalInOut(board.ESP BUSY)

esp32 reset = DigitalInOut(board.ESP RESET)

If you have an externally connected ESP32:
esp32 cs = DigitalInOut(board.D9)

esp32 ready = DigitalInOut(board.D10)

esp32_reset = DigitalInOut(board.D5)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)
esp = adafruit esp32spi.ESP SPIcontrol(spi, esp32 cs, esp32 ready, esp32 reset)
"""Use below for Most Boards"""
status light = neopixel.NeoPixel(
board.NEOPIXEL, 1, brightness=0.2
) # Uncomment for Most Boards
"""Uncomment below for ItsyBitsy M4"""
status_light = dotstar.DotStar(board.APA102_SCK, board.APA102_MOSI, 1, brightness=0.2)
Uncomment below for an externally defined RGB LED
import adafruit rgbled
from adafruit esp32spi import PWMOut
RED LED = PWMOut.PWMOut(esp, 26)
GREEN LED = PWMOut.PWMOut(esp, 27)
BLUE LED = PWMOut.PWMOut(esp, 25)
status light = adafruit rgbled.RGBLED(RED LED, BLUE LED, GREEN LED)
wifi = adafruit esp32spi wifimanager.ESPSPI WiFiManager(esp, secrets, status light)

HOH OB R OB B R B

counter = 0

while True:
try:
print("Posting data...", end="")
data = counter
feed = "test"

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 34 of 53

payload = {"value": data}
response = wifi.post(
"https://io.adafruit.com/api/v2/"
+ secrets["aio username"]
+ "/feeds/"
+ feed
+ "/data",
json=payload,
headers={"X-AIO-KEY": secrets["aio key"]l},
)
print(response.json())
response.close()
counter = counter + 1
print("0K")
except (ValueError, RuntimeError) as e:
print("Failed to get data, retrying\n", e)
wifi.reset()
continue
response = None
time.sleep(15)

You'll note here we use a secrets.py file to manage our SSID info. The wifimanager is given the ESP32 object, secrets
and a neopixel for status indication.

Note, you'll need to add a some additional information to your secrets file so that the code can query the Adafruit 10
API:

® ajo_username
® aio _key

You can go to your adafruit.io View AlO Key link to get those two values and add them to the secrets file, which will
now look something like this:

This file is where you keep secret settings, passwords, and tokens!
If you put them in the code you risk committing that info or sharing it

secrets = {

'ssid' : ' your ssid ',

'password' : ' your wifi password ',

'timezone' : "America/Los Angeles", # http://worldtimeapi.org/timezones
'aio _username' : ' your aio username ',

'aio key' : ' your aio key ',

}

Next, set up an Adafruit IO feed named test

® |f you do not know how to set up a feed, follow this page and come back when you've set up a feed named
test . (https://adafru.it/f5k)

We can then have a simple loop for posting data to Adafruit IO without having to deal with connecting or initializing the
hardware!

Take a look at your test feed on Adafruit.io and you'll see the value increase each time the CircuitPython board posts
data to it!

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 35 of 53

https://learn.adafruit.com/adafruit-io-basics-feeds/creating-a-feed

ads /test

page of 1

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 36 of 53

* adafruit learning system
Arduino

You can use an AirLift with Arduino. Unlike CircuitPython, it work work with just about any Arduino board, even a classic
Arduino UNO. However, if you want to use libraries like Adafruit IO Arduino, ArduinoJSON, or add sensors and SD
card, you'll really want an ATSAMD21 (Cortex MO) or ATSAMD51 (Cortex M4), both of which have plenty or RAM.

Library Install

We're using a variant of the Arduino WiFiNINA library, which is amazing and written by the Arduino team! The official
WiFi101 library won't work because it doesn't support the ability to change the pins.

So! We made a fork that you can install.

Click here to download the library:

https://adafru.it/Evm

https://adafru.it/Evm

Within the Arduino IDE, select Sketch->Include Library -> Add .ZIP library...

Airlift_Breakout | Arduino 185 [l s B 0 .
File Edit [Sketch| Tools Help
Verify/Compile Ctrl+R
Upload Ctrl+U
AlrLit_| Upload Using Pregrammer Ctrl+Shift+ U
#incluyl Export compiled Binary Ctrl+Alt+5
#inclyl
. Show Sketch Folder Ctrl+K
#inclul
#inclyl Include Library ﬂ)
$inelu Add File... Manage Libraries...

#include "ESP3Z2BootRCM.h" Add ZIP Library...
#include "Rdafruit NeoPixel.h"
Arduino libraries

#define ESP3Z_GPIOO 7 ArduinoHttpClient
#define ESP32 RESETN & ArduinoSound
#define SPIWIFI ACEK Q AudioZero

And select the zip you just downloaded.

First Test

OK now you have it wired and library installed, time to test it out!

Lets start by scanning the local networks. Load up the ScanNetworks example

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 37 of 53

https://github.com/adafruit/WiFiNINA/archive/master.zip

I[File] edit Sketch Tools Help

MNew Ctrl+N
Open... Ctrl+0
Open Recent

Sketchbook

Exarnples

Close Ctrl+W
Save Ctrl+5S

Save As... Ctrl+Shift+5

Page Setup Ctrl+5Shift+P
Print Ctrl+P

Preferences Ctrl+ Comma
Quit Ctrl+Q

I T T LT TR T LT T

(https://adafru.it/EVu)

At the top you'll see a section where the GPIO pins are defined

#define SPIWIFI SPI
#define SPIWIFI_SS 10
#define SPIWIFI_ACK 7
#define ESP32 RESETN 5
#define ESP32 GPIOO -1

(https://adafru.it/EVv)

WiFil01
WiFiNIMNA
RETIRED

Examples for Adafruit Metro M4 (SAM

125
SAMD_AnalogCorrection
spu

SPI

USBHost

Wire

/{ Configure the pins used for the ESP32 connection

// The 5PI port

// Chip select pin

// a.k.a BUSY or RERDY pin
// BReset pin

// Wot connected

AP_SimpleWebServer
ConnectMoEncryption
ConnectWithWEP
ConnectWithWPA

ScanMetworks

ScanMetworksAdvanced
SimpleWebServerWiki
Tools

WiFiChatServer
WiFiPing

If you don't see this, you may have the wrong WIFiNINA library installed. Uninstall it and re-install the Adafruit one as

above.

Arduino Microcontroller Pin Definition

Next, you'll need to need to modify the pin definition above for the AirLift Shield. Replace the configuration in the

sketch with the pinouts below:

#define SPIWIFI SPI
#define SPIWIFI_SS 10
#define ESP32_RESETN 5
#define SPIWIFI_ACK 7
#define ESP32_GPIOO 6

// The SPI port

// Chip select pin

// Reset pin

// a.k.a BUSY or READY pin

Compile and upload to your board wired up to the AirLift

© Adafruit Industries

https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor

Page 38 of 53

WiFi Scanning test

MAC: C4:4F:33:0E:B0:BD
Scanning available networks...
#*% Scan Networks #*%

number of available networks=:10

0) Adafruit Signal: -36 dBm Encryption: WBAZ
1) Consulate Guest Signal: -55 dBm Encryption: WPAZ
2) consulatewireless Signal: -60 dBm Encryption: WPAZ
3) Adafruit Signal: -66 dBm Encryption: WPAZ
4) consulatewireless Signal: -67 dBm Encryption: WPAZ
5) Consulate Guest Signal: -69 dBm Encryption: WPAZ
&) Adafruit Signal: -69 dBm Encryption: WPAZ
7) Consulate Guest Signal: -71 dBm Encryption: WPAZ
8) consulatewireless Signal: -72 dBm Encryption: WPAZ

9} ESP_EBEBEF&C Signal: -75 dBm Encryption: None

(https://adafru.it/EVw)
If you don't even get the MAC address printed out, check your wiring.

If you get the MAC address but cannot scan any networks, check your power supply. You need a solid 3-5VDC
into Vin in order for the ESP32 not to brown out.

WiFi Connection Test

Now that you have your wiring checked, time to connect to the Internet!

Open up the WiFiWebClient example

Edit Sketch Tools Help
MNew Ctrl+M
Open... Ctrl+0
Open Recent WiFi101
Sketchbook WiFiNINA AP_SimpleWebServer
e RETIRED ConnectMeEncryption
.) ConnectWithWEP
Close Ctrl+W Examples for Adafruit ItsyBitsy M4 (SAMDS51)
ConnectWithWPA
Save Ctrl+5 25
. ScanMetworks
Save As... Ctrl+Shift+5 SAMD_AnalogCorrection
SpU ScanMetworksAdvanced
T S SimpleWebServerWiFi
i SPI
Print Ctrl+P Took b
USBHost -
Preferences Ctrl+Comma Wire WiFiChatServer
WiFiPing
Quit Ctrl+Q Examples from Custom Libraries WiFiSSLClient
#define SPIWIFI S5 AccelStepper WiFiUdpNtpClient
#define SPIWIFI_ACK Adafruit AD51x15 WikiUdpSendReceiveString
| #define ESP32_RESEIN Adafruit ADT7410 Library WiFiWebClient
#define ESP32 GPIOO Adafruit ADXL343 WiFiWebClientRepeating
#endif Adafruit ADXL345 WiFiWebServer
AJ_E_ i AREVMIC k[

(https://adafru.it/EVX)

Open up the secondary tab, arduino_secrets.h. This is where you will store private data like the SSID/password to your

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 39 of 53

network.

arduino_secrets.h

kdefine SECRET SSID "your wifi ssid"
#define SECRET PASS "your wifi password"”

(https://adafru.it/EVYy)
You must change these string values before updating to your board!

After you've set it correctly, upload and check the serial monitor. You should see the following. If not, go back, check
wiring, power and your SSID/password

Found firmware 1.3.0

ARttempting to connect to S55ID: Adafruit
Connected to wifi

SSID: Adafruit

IP Address: 10.0.1.179

signal strength (RS5I):-44 dBm

Starting connection to server...
connected to server

HTTP/1.1 200 OK

Server: nginx/1.10.3 (Ubuntu)

Date: Wed, 10 Apr 2019 20:55:51 GMT
Content-Type: text/html
Content-Length: 73

Last-Modified: Thu, 16 Feb 2017 17:42:209 GMT
Connection: close

ETag: "58a5e4B5-48"

Lccept-Ranges: bytes

Thi= is a test of the CC3000 module!
If you can read this, its working :)

dizconnecting from server.

(https://adafru.it/EVz)

Secure Connection Example

Many servers today do not allow non-SSL connectivity. Lucky for you the ESP32 has a great TLS/SSL stack so you can
have that all taken care of for you. Here's an example of a secure WiFi connection:

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 40 of 53

Edit Sketch Tools Help

Mew Ctrl+M
Open... Ctrl+0

Open Recent

Quit Ctrl+Q

Sketchbook

Examples

Close Ctrl+W

Save Ctrl+5

Save As... Ctrl+5Shift+5
I Page Setup Ctrl+Shift+P

Print Ctrl+P

Preferences Ctrl+ Comma

Temboo
WiFil01
WiFiNINA
RETIRED

Examples for Adafruit ItsyBitsy M4 (SAMDS51)
25

SAMD_AnalogCorrection

sDu

SPI

USBHost

Wire

FUCLLIO= JELWILL

#define SPIWIFI_SS

#endif

vaid setup() {
(https://adafru.it/EVA)

Note we use WIiFiSSLClient client; instead of WiFiClient client; to require an SSL connection!

© Adafruit Industries

|| #define SPIWIFI ACK
#define ESP32_RESETN
#define ESP32_GPIOD

Examples from Custom Libraries
AccelStepper

Adafruit ADSLX15

Adafruit ADT7410 Library
Adafruit ADXL343

Adafruit ADXL345

Adafruit AM2315

AP_SimpleWebServer
ConnectMeEncryption
ConnectWithWEP
ConnectWithWPA
ScanMetworks
ScanMetworksAdvanced
SimpleWebServerWiFi
Teols

WiFiChatServer
WiFiPing

WiFiSSLClient

WiFiUdpMtpClient
WiFiUdpSendReceiveString
WiFiWebClient
WiFiWebClientRepeating
WiFiWebServer

d

https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor

Page 41 of 53

-— — BT =)
@ COM161 (Adafruit IksyBitsy M4 (SAMD51]) =

Attempting to connect to SSID: Adafruit
Connected to wifi

SSID: Adafruit

IF Address: 10.0.1.17%9

signal strength (RS5I):-52 dBm

Starting connection to server...

connected to server

HTTE/1.1 200 OF

cache-control: must-revalidate, max-age=e00
.content—dispositinn: attachment; filename=json.json
content-type: application/json;charset=utf-8
expires: Wed, 10 Apr 2019 21:17:24 GMT
fllast-modified: Wed, 10 Apr 2018 21:07:24 GMT
strict-transport-security: max-age=631138518
timing-allow-origin: *

x-connection-hash: ab327136383fal0f3bb7779£53ce3Tfae
x-content-type-options: nosniff

\[x-frame-options: SAMECRIGIN

x-response-time: 12

x-xss-protection: 1; mode=block; report=https://twitter.com/i/xss report
Content-Length: 187

hccept-Ranges: bytes

Date: Wed, 10 aApr 2019 21:07:24 GMT

WVia: 1.1 warmnish

Zge: 0

llconnection: close

H-Served-By: cache-bwii023-BWI

|[X-Cache: MISS

K-Timer: S51554930445.53460%96,Vs0,VE2ZS

Vary: Accept-Encoding

(|[[{"following":false, "id":"20731304", "screen name":"adafruit"”, "name":"adafruit industries", "proted

diszconnecting from server.
ead 959 bytes

4 | 1 F

[¥7] Autoscral BothNL&CR v 115200baud + |

(https://adafru.it/EVB)

JSON Parsing Example

This example is a little more advanced - many sites will have API's that give you JSON data. We'll
use ArduinoJSON (https://adafru.it/Evn) to convert that to a format we can use and then display that data on the serial
port (which can then be re-directed to a display of some sort)

First up, use the Library manager to install ArduinoJSON (https://adafru.it/Evo).

Then load the example JSONdemo

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 42 of 53

https://arduinojson.org/
https://arduinojson.org/v6/doc/installation/

Examples
Close
Save

Save As..,

Page Setup
Print

Preferences

Quit

Ctrl+W
Ctrl+5
Ctrl+5Shift+5

Ctrl+Shift+P
Ctrl+P

Ctrl+ Comma

Ctrl+Q

(https://adafru.it/EVC)

WiFil01 »

WiFiNIMNA
RETIRED

Examples for Adafruit ItsyBitsy M4
25

SAMD_AnalogCorrection

SDuU

SPI

USBHost

AP _SimpleWebServer
ConnectMNoEncryption
ConnectWithWEP
ConnectWithWPA
J50MNdemo
ScanMetworks
ScanMetworksAdvanced
SimpleWebServerWiFi

b

By default it will connect to to the Twitter banner image API, parse the username and followers and display them.

IF Rddress:

Eesponse:

10.0.1.178

connected to server

Twitter username: adafruit
Twitter followers: 139263

(https://adafru.it/EVD)

Attempting to connect to SSID: Adafruit
Connected to wifi
S55ID: Adafruit

zignal strength (RSSI):-31 dBm

Starting connection to server...

Adapting Other Examples

Once you've got it connecting to the Internet you can check out the other examples. The only change you'll want to
make is at the top of the sketches, add:

#define SPIWIFI SPI
#define SPIWIFI SS 10
#define ESP32 RESETN 5
#define SPIWIFI ACK 7
#define ESP32 GPIOO 6

// The SPI port

// Chip select pin

// Reset pin

// a.k.a BUSY or READY pin

And then before you check the status() of the module, call the function WiFi.setPins(SPIWIFI_SS, SPIWIFI_ACK,
ESP32_RESETN, ESP32_GPIOO0, &SPIWIFI); like so:

// check for the WiFi module:

WiFi.setPins(SPIWIFI_SS, SPIWIFI ACK, ESP32_ RESETN, ESP32_GPIOO, &SPIWIFI);

while (WiFi.status() == WL _NO MODULE) {
Serial.println("Communication with WiFi module failed!");
// don't continue
delay(1000);

}

© Adafruit Industries

https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor

Page 43 of 53

* adafruit learning system
Upgrade External ESP32 Airlift Firmware

Bridging the ESP32's Optional Control Pins

External AirLift boards have three optional ESP32 control pins which are not connected by default:

® ESPGPIOO
® ESPRX
® ESPTX

Before continuing the steps on this page - you will need to add solder bridges on the ESPTX, EXPRX and GPIOO pads
on the bottom of breakout.

Make sure you solder all three of these pads together. You will not be able to upload firmware to your ESP32
|:| if they are not connected.

1M |
2 6O
9830

tsyl

@)
k:
&
=
|
&

i
E487316

ARL94Y-0

o8

ivUB
w

This section is only for an AirLift FeatherWing with a Feather M4, or an AirLift BitsyWing with an ltsyBitsy M4. If
|:| you are using a different hardware combination - use the "Code - Arduino Passthrough" section instead.

Uploading Serial Passthrough Code for Feather M4 or ItsyBitsy M4

First, back up any code and files you have on your CIRCUITPY drive. It will be overwritten by the code you're going to
upload to your board. You should not end up losing any files on the QSPI flash, but it's a good idea to back them up
anyways.

Download the UF2 for your board to your Desktop.
https://adafru.it/IEK
https://adafru.it/IEK

Find the reset button on your board. It's a small, black button, and on most of the boards, it will be the only button
available.

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 44 of 53

https://github.com/adafruit/Adafruit_Learning_System_Guides/raw/master/Adafruit_ESP32_Arduino_Demos/SerialESPPassthrough/Airlift-BitsyWing-FeatherWing-Passthru.UF2

Tap this button twice to enter the bootloader. If it doesn't work on the first try, don't be discouraged. The rhythm of the
taps needs to be correct and sometimes it takes a few tries.

Once successful, the RGB LED on the board will flash red and then stay green. A new drive will show up on your
computer. The drive will be called boardnameBOOT where boardname is a reference to your specific board. For

example, a Feather will have FEATHERBOOT and a Trinket will have TRINKETBOOT etc. Going forward we'll just call
the boot drive BOOT

> [This PC
> FEATHERBOOT (D:)

» |_j’ Metwork

The board is now in bootloader mode. Now find the UF2 file you downloaded. Drag that file to the BOOT drive on your
computer in your operating system file manager/finder.

Locations
== [F] CURRENT.UF2
| A

MERTEIRE - = B INDEX.HTM

Network B INFO_UF2.TXT

i PyPortal ESP32_Passthru.UF2
Dropbox

AirDrop
The lights should flash again, BOOT will disappear. Your board should re-enumerate USB and appear as a COM or
Serial port on your computer. Make a note of the serial port by checking the Device Manager (Windows) or typing Is

/dev/cu* or /dev/tty* (Mac or Linux)in a terminal.

If your board is listed in the terminal, proceed to the Uploading nina-fw with esptool section of this guide.

Code - Arduino Passthrough

With the ESP32's optional control pins soldered together, you'll be turning your Airlift breakout, shield, or wing into a

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 45 of 53

USB to Serial converter. To do this, you'll need a special Arduino sketch named SerialESPPassthrough.ino.

Click Download: Project ZIPto download the code below.

/*
SerialNINAPassthrough - Use esptool to flash the ESP32 module
For use with PyPortal, Metro M4 WiFi...

Copyright (c) 2018 Arduino SA. All rights reserved.

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public

License along with this library; if not, write to the Free Software

Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/

#include <Adafruit_NeoPixel.h>
unsigned long baud = 115200;

#if defined (ADAFRUIT FEATHER M4 EXPRESS) || \
defined (ADAFRUIT FEATHER MO EXPRESS) || \
defined (ARDUINO AVR FEATHER32U4) || \
defined (ARDUINO NRF52840 FEATHER) || \
defined (ADAFRUIT ITSYBITSY M0 EXPRESS) || \
defined (ADAFRUIT ITSYBITSY M4 EXPRESS) || \
defined (ARDUINO AVR ITSYBITSY32U4 3V)
// Configure the pins used for the ESP32 connection
#define SerialESP32 Seriall
#define SPIWIFI SPI // The SPI port
#define SPIWIFI SS 13 // Chip select pin
#define ESP32 RESETN 12 // Reset pin
#define SPIWIFI_ACK 11 // a.k.a BUSY or READY pin
#define ESP32 GPIOO 10
#define NEOPIXEL PIN 8

#elif defined (ARDUINO AVR FEATHER328P)
#define SerialESP32 Seriall
#define SPIWIFI SPI // The SPI port
#define SPIWIFI SS 4 // Chip select pin
#define ESP32 RESETN 3 // Reset pin
#define SPIWIFI ACK 2 // a.k.a BUSY or READY pin
#define ESP32 GPIOO -1
#define NEOPIXEL PIN 8

#elif defined (TEENSYDUINO)
#define SerialESP32 Seriall
#define SPIWIFI SPI // The SPI port
#define SPIWIFI SS 5 // Chip select pin
#define ESP32 RESETN 6 // Reset pin
#define SPIWIFI ACK 9 // a.k.a BUSY or READY pin
#define FSP32 GPTOA -1

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor

Page 46 of 53

#define NEOPIXEL PIN 8
#elif defined (ARDUINO NRF52832 FEATHER)
#define SerialESP32 Seriall
#define SPIWIFI SPI // The SPI port
#define SPIWIFI SS 16 // Chip select pin
#define ESP32 RESETN 15 // Reset pin
#define SPIWIFI ACK 7 // a.k.a BUSY or READY pin
#define ESP32_GPIOO -1
#define NEOPIXEL PIN 8
#elif !defined(SPIWIFI_SS) // if the wifi definition isnt in the board variant
// Don't change the names of these #define's! they match the variant ones
#define SerialESP32 Seriall
#define SPIWIFI SPI
#define SPIWIFI SS 10 // Chip select pin
#define SPIWIFI ACK 7 // a.k.a BUSY or READY pin
#define ESP32_RESETN 5 // Reset pin
#define ESP32_GPIO® -1 // Not connected
#define NEOPIXEL PIN 8
#endif

Adafruit NeoPixel pixel = Adafruit NeoPixel(1l, NEOPIXEL PIN, NEO GRB + NEO KHZ800);

void setup() {
Serial.begin(baud);
pixel.begin();
pixel.setPixelColor(0, 10, 10, 10); pixel.show();

while (!Serial);
pixel.setPixelColor(0, 50, 50, 50); pixel.show();

delay(100);
SerialESP32.begin(baud);

pinMode (SPIWIFI_SS, OUTPUT);
pinMode (ESP32_GPIOO, OUTPUT);
pinMode (ESP32_RESETN, OUTPUT);

// manually put the ESP32 in upload mode
digitalWrite(ESP32 GPIOO®, LOW);

digitalWrite(ESP32 RESETN, LOW);

delay(100);

digitalWrite(ESP32 RESETN, HIGH);
pixel.setPixelColor (0, 20, 20, 0); pixel.show();
delay(100);

void loop() {
while (Serial.available()) {
pixel.setPixelColor (0, 10, 0, 0); pixel.show();
SerialESP32.write(Serial.read());
}

while (SerialESP32.available()) {
pixel.setPixelColor (0, 0, 0, 10); pixel.show();
Serial.write(SerialESP32.read());

}

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 47 of 53

Code Usage

Unzip the file, and open the SerialESPPassthrough.ino file in the Arduino IDE.

If you're using the AirLift FeatherWing, AirLift Shield or AirLift Bitsy Add-On, use the PassThrough UF2 instructions
above

If you have an AirLift Breakout (or are manually wiring up any of the boards above), change the following pin definitions
in the sketch to match your wiring:

#elif !defined(SPIWIFI_SS) // if the wifi definition isnt in the board variant
// Don't change the names of these #define's! they match the variant ones
#define SerialESP32 Seriall
#define SPIWIFI SPI
#define SPIWIFI SS 10 // Chip select pin
#define SPIWIFI ACK 7 // a.k.a BUSY or READY pin
#define ESP32_RESETN 5 // Reset pin
#define ESP32_GPIOO -1 // Not connected
#define NEOPIXEL PIN 8

#endif

Using the Arduino IDE, upload the code to your board (Sketch->Upload).
After uploading, the board should enumerate USB and appear as a COM or Serial port on your computer.

Make a note of the serial port by checking the Device Manager (Windows) or typing in Is /dev/cu* or /dev/tty* (Mac

or Linux) in a terminal

Burning nina-fw with esptool

Click the link below to download the latest nina-fw .bin file. Unzip it and save the .bin file to your desktop.

This section assumes you know how to use 'esptool' to upload firmware to your ESP! If you're not sure, check
|:| and look for tutorials.

https://adafru.it/G3D

https://adafru.it/G3D

If you're using macOS or Linux - run the following command, replacing /dev/ttys6 with the serial port of your board
and NINA_W102-1.6.0 with the binary file you're flashing to the ESP32.

esptool.py --port /dev/ttyS6 --before no_reset --baud 115200 write_flash 0 NINA_W102-1.6.0.bin

If you're using Windows - run the following command, replacing COM7 with the serial port of your board
and NINA_W102-1.6.0 with the binary file you're flashing to the ESP32

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 48 of 53

https://github.com/espressif/esptool
https://github.com/adafruit/nina-fw/releases/latest

esptool.py --port COM7 --before no_reset --baud 115200 write_flash 0 NINA_W102-1.6.0.bin
The command should detect the ESP32 and will take a minute or two to upload the firmware.

If ESPTool doesn't detect the ESP32, make sure you've uploaded the correct .UF2 file to the bootloader and are using
the correct serial port.

$ esptool.py
esptool.py v2.7
Serial port /dev/cu.usbmodem1432201

[port

Detecting chip type... ESP32
Chip is ESP3ZD@NDQ6 (revision 1)
Features: WiFi, BT, Dual Core, 248MHz, VRef calibration in efuse, Coding Scheme None

119

Configuring flash size...

Auto-detected Flash size: 4MB

Compressed 1154848 bytes to 622216...

Wrote 1154048 bytes (622216 compressed) at @x00000000 in 204.7 seconds (effective 45.1 kbit/s)...
Hash of data verified.

Leaving. ..
Hard resetting via RTS pin...

Once the firmware is fully uploaded, the ESP32 will reset.

Verifying the Upgraded Firmware Version

To verify everything is working correctly, we'll load up either an Arduino sketch or CircuitPython code. At this point, you
may also want desolder the connections between the Optional ESP32 control pins you made earlier using a solder
sucker (https://adafru.it/FWk) or a bit of solder wick (https://adafru.it/yrC).

Arduino

If you were previously using your ESP32 with Arduino, you should load up an Arduino sketch to verify everything is
working properly and the version of the nina-fw correlates with the version the sketch reads.

Open up File->Examples->WiFiNINA->ScanNetworks and upload the sketch. Then, open the Serial Monitor. You should
see the firmware version printed out to the serial monitor.

[JON) /dev/cu.usbmodem1412301 (Adafruit PyPortal M4 (SAMDS1))

Send

WiFi Scanning test

1.3.0 <= New Firmware Version

Firmware OK

MAC: C4:4F:33:8D:5C:19

Scanning available networks...

** Scan Networks **

number of available networks:1@

@) DreamingDoing Signal: -58 dBm Encryption: WPAZ
1) MySpectrumiWiFic@-2G Signal: -66 dBm Encryption: WPAZ
2) Reina_ZGEXT 5ignal: -74 dBm Encryption: WPAZ

3) TGle7ZaD2 Signal: -74 dBm Encryption: WPAZ

4) MySpectrumiWiFi75-2G 5Signal: -77 dBm Encryption: WPAZ
5) MySpectrumWiFiBa-2G Signal: -77 dBm Encryption: WPAZ

CircuitPython

If you were previously using your ESP32 project with CircuitPython, you'll need to first reinstall CircuitPython firmware
(UF2) for your board. The QSPI flash should have retained its contents. If you don't see anything on the CIRCUITPY

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 49 of 53

https://www.adafruit.com/product/148
https://www.adafruit.com/product/149

volume, copy files from the backup you made earlier to CIRCUITPY .

To verify the new ESP32 WiFi firmware version is correct, follow the Connect to WiFi step in this
guide (https://adafru.it/Eao) and come back here when you've successfully ran the code. The REPL output should
display the firmware version you flashed.

code.py output:
ESP3Z SPI webclient test

ESP32 found and in idle mode ”

Firmware vers. bytearray(b'l.3.0\x@0")
MAC addr: ['@x19', "@x5c', '@xd', '@x33', '@x4f', 'Oxc4']

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 50 of 53

https://learn.adafruit.com/adafruit-pyportal/internet-connect#connect-to-wifi-17-4

ﬁr adafruit learning system
Downloads

Files

® ESP32 WROOM32 Datasheet (https://adafru.it/EVE)
® FEagleCAD files on GitHub (https://adafru.it/F6p)
® Fritzing object in Adafruit Fritzing Library (https://adafru.it/F6q)

Schematic
Module & LEDs Arduino Shield B
] :FH
i s go
a3
ARDUIND 7|
 Epeseeypommey
Power p
€ e \-;-'n e ADAFRUIT INOUSTRIES
Fab Print

Mraital To0 Tiredtal 1o

1242 44 4B A

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 51 of 53

https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32_datasheet_en.pdf
https://github.com/adafruit/Adafruit-Airlift-Shield-PCB
https://github.com/adafruit/Fritzing-Library/blob/master/parts/Adafruit%20Airlift%20Shield.fzpz

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor Page 52 of 53

© Adafruit Industries Last Updated: 2020-05-05 10:40:42 AM EDT Page 53 of 53

	Guide Contents
	Overview
	Pinouts
	Power Pins
	SPI Interface Pins
	ESP32 Control Pins
	SD Card Interface
	LEDs
	Prototyping Area

	Assembly
	Installing Standard Headers
	Stack Alert!

	CircuitPython
	CircuitPython Microcontroller Pinout

	CircuitPython Installation of ESP32SPI Library
	CircuitPython Usage

	Internet Connect!
	What's a secrets file?
	Connect to WiFi
	Requests
	HTTP GET with Requests
	HTTP POST with Requests
	Advanced Requests Usage

	WiFi Manager
	Arduino
	Library Install
	First Test
	Arduino Microcontroller Pin Definition

	WiFi Connection Test
	Secure Connection Example
	JSON Parsing Example
	Adapting Other Examples

	Upgrade External ESP32 Airlift Firmware
	Bridging the ESP32's Optional Control Pins
	Uploading Serial Passthrough Code for Feather M4 or ItsyBitsy M4

	Code - Arduino Passthrough
	Code Usage
	Burning nina-fw with esptool
	Verifying the Upgraded Firmware Version
	Arduino
	CircuitPython

	Downloads
	Files
	Schematic
	Fab Print

