
Sensor Plotting with Mu and CircuitPython
Created by Kattni Rembor

Last updated on 2018-09-06 08:05:52 PM UTC

2
3
5
7
9

11
13
15
17
19
22

Guide Contents

Guide Contents
Light
Temperature
Buttons and Switch
Motion
Sound
Capacitive Touch
Potentiometer
Color
Heartbeat Pulse
Soil Moisture

© Adafruit Industries https://learn.adafruit.com/sensor-plotting-with-mu-and-circuitpython Page 2 of 25

Light

We're going to use CircuitPython, Mu, and the light sensor on Circuit Playground Express to plot light levels. We have a
simple nine-line piece of code below. We'll run this code on our Circuit Playground Express and use Mu to plot the
sensor data that CircuitPython prints out.

https://adafru.it/ANO

https://adafru.it/ANO

Save the following as code.py on your Circuit Playground Express board, using the Mu editor:

On the first few lines we import analogio , board and time , and setup our light sensor. Inside our while loop, we are
print() -ing the light level. The time.sleep() is to keep from spamming the results - if they're too fast, they get difficult to
read!

Note that the Mu plotter looks for tuple values to print. Tuples in Python come in parentheses () with comma
separators. If you have two values, a tuple would look like (1.0, 3.14) Since we have only one value, we need to have it
print out like (1.0,) note the parentheses around the number, and the comma after the number. Thus the extra
parentheses and comma in print((light.value,)) .

Once you have everything setup and running, try placing your hand over the Circuit Playground Express, and watch
the plotter immediately react! When you block the light from reaching the CPX, the graphing plotter line goes down. If
you shine a flashlight on it to add more light, the plotter goes up!

It's a really easy way to test out your sensors and get a feeling for analog reads in CircuitPython!

import time

import analogio
import board

light = analogio.AnalogIn(board.LIGHT)

while True:
 print((light.value,))
 time.sleep(0.1)

© Adafruit Industries https://learn.adafruit.com/sensor-plotting-with-mu-and-circuitpython Page 3 of 25

https://learn.adafruit.com/welcome-to-circuitpython/installing-mu-editor

Note you can have the text REPL on the left and resize the plotter to be big and on the right like above. That way you
see the numbers and the graph at the same time. The plotter will automatically re-scale depending on light levels.

© Adafruit Industries https://learn.adafruit.com/sensor-plotting-with-mu-and-circuitpython Page 4 of 25

Temperature

We're going to use CircuitPython, Mu and the temperature sensor built into the Circuit Playground Express to plot
temperature change. We'll run this code on our Circuit Playground Express and use Mu to plot the sensor data that
CircuitPython prints out.

https://adafru.it/ANO

https://adafru.it/ANO

Save the following as code.py on your Circuit Playground Express board, using the Mu editor:

Our code is quite simple. We import adafruit_thermistor , board and time . Then we setup our temperature sensor. Inside
our while loop, we print the temperature in Celsius.

If you'd like to see Fahrenheit instead, place a # (# + space) before the line print((thermistor.temperature,)) and remove
the # before the line print(((thermistor.temperature * 9 / 5 + 32),)) . The temperature is in Celsius by default, so we include
a little math (the * 9 / 5 + 32) to convert it to Fahrenheit.

Note that the Mu plotter looks for tuple values to print. Tuples in Python come in parentheses () with comma
separators. If you have two values, a tuple would look like (1.0, 3.14) . Since we have only one value, we need to have
it print out like (1.0,) note the parentheses around the number, and the comma after the number. Thus the extra
parentheses and comma in print((thermistor.temperature,)) .

Once you have everything loaded and running, you can place your finger over the temperature sensor to see the
plotter immediately respond! Try breathing on your CPX temperature sensor to increase the temperature and watch
the plotter go up! Try setting it on a cool surface to watch the plotter go down!

This is a great way to tell the temperature and plot temperature changes in Celsius (or Fahrenheit).

​import time

import adafruit_thermistor
import board

thermistor = adafruit_thermistor.Thermistor(
 board.TEMPERATURE, 10000, 10000, 25, 3950)

while True:
 print((thermistor.temperature,))
 # print(((thermistor.temperature * 9 / 5 + 32),)) # Fahrenheit
 time.sleep(0.25)

© Adafruit Industries https://learn.adafruit.com/sensor-plotting-with-mu-and-circuitpython Page 5 of 25

https://learn.adafruit.com/welcome-to-circuitpython/installing-mu-editor

© Adafruit Industries https://learn.adafruit.com/sensor-plotting-with-mu-and-circuitpython Page 6 of 25

Buttons and Switch

We're going to use CircuitPython, Mu, and the two buttons and one switch on Circuit Playground Express to plot button
presses and the switch location. We'll run this code on our Circuit Playground Express and use Mu to plot the data that
CircuitPython prints out.

https://adafru.it/ANO

https://adafru.it/ANO

Save the following as code.py on your Circuit Playground Express board, using the Mu editor:

Our code is very simple. First we import digitalio , board and time . Then, we create the button_a , button_b and switch

objects.

Our main loop consists of if , elif , and else statements. An elif statement says "otherwise, if" something happens, do
a thing. An else statement says "otherwise do" a thing regardless of what is happening. So, our main loop reads: if
button A is pressed, print 1, otherwise, if button B is pressed, print 2, otherwise, if the switch is moved to the right,
print -1, otherwise print 0. Therefore, it will print 0 until you press a button or move the switch. Then we have a
time.sleep(0.1) to keep from spamming the results - if they move too quickly they're difficult to read!

Note that the Mu plotter looks for tuple values to print. Tuples in Python come in parentheses () with comma
separators. If you have two values, a tuple would look like (1.0, 3.14) Since we have only one value, we need to have it
print out like (1.0,) note the parentheses around the number, and the comma after the number. Thus the extra
parentheses and comma in print((1,)) , print((2,)) , etc.

import time

import board
import digitalio

button_a = digitalio.DigitalInOut(board.BUTTON_A)
button_a.direction = digitalio.Direction.INPUT
button_a.pull = digitalio.Pull.DOWN

button_b = digitalio.DigitalInOut(board.BUTTON_B)
button_b.direction = digitalio.Direction.INPUT
button_b.pull = digitalio.Pull.DOWN

switch = digitalio.DigitalInOut(board.SLIDE_SWITCH)
switch.direction = digitalio.Direction.INPUT
switch.pull = digitalio.Pull.UP

while True:
 if button_a.value:
 print((1,))
 elif button_b.value:
 print((2,))
 elif switch.value:
 print((-1,))
 else:
 print((0,))
 time.sleep(0.1)

© Adafruit Industries https://learn.adafruit.com/sensor-plotting-with-mu-and-circuitpython Page 7 of 25

https://learn.adafruit.com/welcome-to-circuitpython/installing-mu-editor

Once you have everything setup and running, try pressing one of the buttons on the Circuit Playground Express, and
watch the plotter immediately react! When you press button A or button B, the plotter line goes up. If you move the
switch to the right, the plotter line goes up!

This is a great way to test the buttons and switch on the Circuit Playground Express and plot different numbers simply
by printing them!

© Adafruit Industries https://learn.adafruit.com/sensor-plotting-with-mu-and-circuitpython Page 8 of 25

Motion

We're going to use CircuitPython, Mu and the accelerometer built into the Circuit Playground Express to plot motion.
We'll run this code on our Circuit Playground Express and use Mu to plot the motion data that CircuitPython prints out.

https://adafru.it/ANO

https://adafru.it/ANO

Save the following as code.py on your Circuit Playground Express board, using the Mu editor:

Our code is really simple. We import time , board , adafruit_lis3dh , and busio . Then we setup the accelerometer. Inside
our while loop, we assign x, y, z to be the motion values. Then we print our motion values. The time.sleep(0.1) slows
down the readings a little - without it they're too fast to read!

Note that the Mu plotter looks for tuple values to print. Tuples in Python come in parentheses () with comma
separators. If you have two values, a tuple would look like (1.0, 3.14) . We have three values, (x, y, z) , and note that
the tuple itself has its own parentheses. Thus the extra parentheses in print((x, y, z)) .

Once you have everything up and running, try moving the board around to see the plotter respond immediately! The
accelerometer is in the center of the board, and depending on which axis you move the board around, the x, y or z
values will change. Try moving it only one direction to watch a single value change! Try shaking it all around to see all
the values change significantly!

This is a great way to see the motion values and plot the motion as you move the board!

import time
import board
import adafruit_lis3dh
import busio

i2c = busio.I2C(board.ACCELEROMETER_SCL, board.ACCELEROMETER_SDA)
lis3dh = adafruit_lis3dh.LIS3DH_I2C(i2c, address=0x19)
lis3dh.range = adafruit_lis3dh.RANGE_8_G

while True:
 x, y, z = lis3dh.acceleration
 print((x, y, z))
 time.sleep(0.1)

© Adafruit Industries https://learn.adafruit.com/sensor-plotting-with-mu-and-circuitpython Page 9 of 25

https://learn.adafruit.com/welcome-to-circuitpython/installing-mu-editor

© Adafruit Industries https://learn.adafruit.com/sensor-plotting-with-mu-and-circuitpython Page 10 of 25

Sound

We're going to use CircuitPython, Mu and the sound sensor built into the Circuit Playground Express to plot sound
levels. We'll run this code on our Circuit Playground Express and use Mu to plot the sensor data that CircuitPython
prints out.

https://adafru.it/ANO

https://adafru.it/ANO

Save the following as code.py on your Circuit Playground Express board, using the Mu editor:

Let's look at the code!

First we import audiobusio , time , board , array and math . Then we have two helper functions. The first one uses math
to return a mean, or average. It is used in the second helper. The second one uses math to return a normalised rms
average (https://adafru.it/Bf5). We use these functions to take multiple sound samples really quickly and average them
to get a more accurate reading.

​import array
import math
import time

import audiobusio
import board

def mean(values):
 return sum(values) / len(values)

def normalized_rms(values):
 minbuf = int(mean(values))
 sum_of_samples = sum(
 float(sample - minbuf) * (sample - minbuf)
 for sample in values
)

 return math.sqrt(sum_of_samples / len(values))

mic = audiobusio.PDMIn(
 board.MICROPHONE_CLOCK,
 board.MICROPHONE_DATA,
 frequency=16000,
 bit_depth=16
)
samples = array.array('H', [0] * 160)
mic.record(samples, len(samples))

while True:
 mic.record(samples, len(samples))
 magnitude = normalized_rms(samples)
 print(((magnitude),))
 time.sleep(0.1)

© Adafruit Industries https://learn.adafruit.com/sensor-plotting-with-mu-and-circuitpython Page 11 of 25

https://learn.adafruit.com/welcome-to-circuitpython/installing-mu-editor
https://en.wikipedia.org/wiki/Root_mean_square

Next we set up the microphone object and our samples variable. Then we initialise the mic object so it's ready when
we are.

Then we use the mic object to start taking sound samples. We use our normalised rms to find the average of a given
set of samples, and we call that the magnitude . Last, we print the magnitude to the serial console.

Note that the Mu plotter looks for tuple values to print. Tuples in Python come in parentheses () with comma
separators. If you have two values, a tuple would look like (1.0, 3.14) Since we have only one value, we need to have it
print out like (1.0,) note the parentheses around the number, and the comma after the number. Thus the extra
parentheses and comma in print(((magnitude),)) .

Once you have everything setup and running, try speaking towards the Circuit Playground Express, and watch the
plotter immediately react! Move further away from the board to cause smaller changes in the plotter line. Move closer
to the board to see bigger spikes!

It's a really easy way to test your microphone and see how it reads sound changes on the Circuit Playground Express!

© Adafruit Industries https://learn.adafruit.com/sensor-plotting-with-mu-and-circuitpython Page 12 of 25

Capacitive Touch

We're going to use CircuitPython, Mu and the capacitive touch pads built into the Circuit Playground Express to plot
the raw capacitive touch values. We'll run this code on our Circuit Playground Express and use Mu to plot the
capacitive touch data that CircuitPython prints out.

https://adafru.it/ANO

https://adafru.it/ANO

Save the following as code.py on your Circuit Playground Express board, using the Mu editor:

Our code is fairly simple. First we import time , touchio and board . Next, we setup four touch pads, A1, A2, A5 and A6.
Inside our while loop, we assign value_PadName to the raw_value for each pad, e.g. value_A1 = touch_A1.raw_value ,
etc. Then we print those values in a tuple. And last, we have a time.sleep(0.1) to slow down the reading of the values -
if it's too fast, it's really hard to read!

Note that the Mu plotter looks for tuple values to print. Tuples in Python come in parentheses () with comma
separators. If you have two values, a tuple would look like (1.0, 3.14) . We have four values, (value_A1, value_A2,

value_A5, value_A6) , and note that the tuple itself has its own parentheses. Thus the extra parentheses in
print((value_A1, value_A2, value_A5, value_A6)) .

Once you have everything up and running, try touching any of the four pads, A1, A2, A5 or A6 to see the plotter
respond immediately! Try touching only one pad to see of the four lines in the plotter go up. Try touching more than
one pad at once to see multiple lines move. The harder you touch the pad, the higher the plotter line will go!

This is a great way to test your capacitive touch pads and plot the changes as you touch different pads!

import time

import board
import touchio

touch_A1 = touchio.TouchIn(board.A1)
touch_A2 = touchio.TouchIn(board.A2)
touch_A5 = touchio.TouchIn(board.A5)
touch_A6 = touchio.TouchIn(board.A6)

while True:
 value_A1 = touch_A1.raw_value
 value_A2 = touch_A2.raw_value
 value_A5 = touch_A5.raw_value
 value_A6 = touch_A6.raw_value
 print((value_A1, value_A2, value_A5, value_A6))
 time.sleep(0.1)

© Adafruit Industries https://learn.adafruit.com/sensor-plotting-with-mu-and-circuitpython Page 13 of 25

https://learn.adafruit.com/welcome-to-circuitpython/installing-mu-editor

© Adafruit Industries https://learn.adafruit.com/sensor-plotting-with-mu-and-circuitpython Page 14 of 25

Potentiometer

We're going to use CircuitPython, Mu, and a potentiometer with Circuit Playground Express to plot voltage levels. We'll
run this code on our Circuit Playground Express and use Mu to plot the voltage data that CircuitPython prints out.

https://adafru.it/ANO

https://adafru.it/ANO

First, let's get the potentiometer attached to your Circuit Playground Express!

To connect the potentiometer to the Circuit Playground

Express:

Connect the left pin on the potentiometer to GND

on the Circuit Playground Express.

Connect the middle pin on the potentiometer to

A1 on the Circuit Playground Express.

Connect the right pin on the potentiometer to

3.3V on the Circuit Playground Express.

Save the following as code.py on your Circuit Playground Express board, using the Mu editor:

Let's take a look at the code!

First we import time , analogio and board . Next we create the potentiometer object and assign it to pin A1 .

Then we have the get_voltage() helper function. By default, analog readings will range from 0 (minimum) to 65535
(maximum). This helper will convert the 0-65535 reading from pin.value and convert it a 0-3.3V voltage reading.

import time

import analogio
import board

potentiometer = analogio.AnalogIn(board.A1)

def get_voltage(pin):
 return (pin.value * 3.3) / 65536

while True:
 print((get_voltage(potentiometer),))
 time.sleep(0.1)

© Adafruit Industries https://learn.adafruit.com/sensor-plotting-with-mu-and-circuitpython Page 15 of 25

https://learn.adafruit.com/welcome-to-circuitpython/installing-mu-editor
https://learn.adafruit.com/assets/53346

Our main loop is super simple. Inside our print statement, we call the get_voltage() helper and provide it with the
potentiometer object. Then we have a time.sleep(0.1) to slow down the printed results - otherwise they'd be too fast to
read!

Note that the Mu plotter looks for tuple values to print. Tuples in Python come in parentheses () with comma
separators. If you have two values, a tuple would look like (1.0, 3.14) Since we have only one value, we need to have it
print out like (1.0,) note the parentheses around the number, and the comma after the number. Thus the extra
parentheses and comma in print((get_voltage(potentiometer),)) .

Once you have everything setup and running, try rotating the potentiometer knob attached the Circuit Playground
Express, and watch the plotter immediately react! Rotate to the left to watch the plotter go down. Rotate to the right to
watch it go up!

This is a great way to see the voltage changes resulting from using a potentiometer, and plot the changes as you
move the knob!

© Adafruit Industries https://learn.adafruit.com/sensor-plotting-with-mu-and-circuitpython Page 16 of 25

Color

We're going to use CircuitPython, Mu, and the light sensor on Circuit Playground Express to plot color levels. We'll run
this code on our Circuit Playground Express and use Mu to plot the color data that CircuitPython prints out.

https://adafru.it/ANO

https://adafru.it/ANO

Save the following as code.py on your Circuit Playground Express board, using the Mu editor:

Let's take a look at the code!

First we import neopixel , analogio , time and board . Next, we create the pixels object for the NeoPixels and the light

object for the light sensor.

LED colors are set using a combination of red, green, and blue, in the form of an (R, G, B) tuple. Each member of the
tuple is set to a number between 0 and 255 that determines the amount of each color present. Red, green and blue in
different combinations can create all the colors in the rainbow! So, for example, to set the LED to red, the tuple would
be (255, 0, 0), which has the maximum level of red, and no green or blue. Green would be (0, 255, 0), etc. For the
colors between, you set a combination, such as cyan which is (0, 255, 255), with equal amounts of green and blue.

The light sensor works as a color sensor by using the NeoPixel next to it (pixel 1) to flash red, green and blue, and then
record the reflected light levels of each color to determine the color of the object being held against it. So, inside our
main loop, we need to flash red, green and blue, record the reflected light levels, and then use math to determine the
level of each color.

​import analogio
import board
import neopixel

pixels = neopixel.NeoPixel(board.NEOPIXEL, 10, brightness=1.0)
light = analogio.AnalogIn(board.LIGHT)

while True:
 pixels.fill((0, 0, 0))
 pixels[1] = (255, 0, 0)
 raw_red = light.value

 red = int(raw_red * (255 / 65535))
 pixels[1] = (0, 255, 0)
 raw_green = light.value

 green = int(raw_green * (255 / 65535))
 pixels[1] = (0, 0, 255)
 raw_blue = light.value

 blue = int(raw_blue * (255 / 65535))
 pixels.fill((0, 0, 0))

 # Printed to match the color lines on the Mu plotter!
 # The orange line represents red.
 print((green, blue, red))

© Adafruit Industries https://learn.adafruit.com/sensor-plotting-with-mu-and-circuitpython Page 17 of 25

https://learn.adafruit.com/welcome-to-circuitpython/installing-mu-editor

The first thing we do in our main loop is make sure the NeoPixels are off with pixels.fill((0, 0, 0)) . Next, we begin with
red. We flash pixel[1] red by assigning it (255, 0, 0) , for 0.5 seconds. Then we grab the light sensor value and assign it
to raw_red .

The light sensor returns a value between 0 and 65535. Since color values are 0-255, we need to use math to scale the
raw light sensor value down to a viable color value. So, to get our red value, we use red = int(raw_red * (255/65535)) . This
takes whatever value the light sensor provides, and returns an equivalent value between 0 and 255. Now we have our
red level!

We repeat the exact same steps for green, and then for blue.

The last thing we do, is print our red , green and blue values in the form of a tuple, so we can see them on the plotter!
We've changed the order a bit to print((green, blue, red)) so the color of the lines on the plotter match the colors they
represent: green for green, blue for blue and orange for red.

Once you have everything setup and running, try holding a colored item up to the light sensor on the Circuit
Playground Express, and watch the plotter immediately react! Hold up a green item to watch the green line go higher
than the blue or red. Hold up a red item and watch the orange line go higher than the green or the blue!

This is a great way to see color levels sense using the light sensor, and plot the changes as you hold up different
colors!

© Adafruit Industries https://learn.adafruit.com/sensor-plotting-with-mu-and-circuitpython Page 18 of 25

Heartbeat Pulse

We're going to use CircuitPython, Mu, and the light sensor on Circuit Playground Express to plot pulse sensing. We'll
run this code on our Circuit Playground Express and use Mu to plot the pulse data that CircuitPython prints out.

https://adafru.it/ANO

https://adafru.it/ANO

Save the following as code.py on your Circuit Playground Express board, using the Mu editor:

For a detailed explanation of how LED pulse sensing works, check out this article (https://adafru.it/BfB).

There are two things we have to do.

First, the values that result from pulse sensing are often noisy or jittery: some are too high, and some are too low, so
we smooth them out by taking an average. We take 10 readings as fast as possible (faster than we need to), find the
average, and that smooth out the noise. This is called oversampling.

Second, we want to center the readings around zero. The original samples are all the values are positive (greater than
or equal to zero). To center the values around zero, we find the average and shift all the values down. So instead of
the value always being greater than zero, it will vary above and below zero, with the average being zero. This is called
"removing the DC bias" on the signal. To learn more about DC bias, check out this article (https://adafru.it/BfC).

import time

import analogio
import board
import neopixel

pixels = neopixel.NeoPixel(board.NEOPIXEL, 10, brightness=1.0)
light = analogio.AnalogIn(board.LIGHT)

Turn only pixel #1 green
pixels[1] = (0, 255, 0)

How many light readings per sample
NUM_OVERSAMPLE = 10
How many samples we take to calculate 'average'
NUM_SAMPLES = 20
samples = [0] * NUM_SAMPLES

while True:
 for i in range(NUM_SAMPLES):
 # Take NUM_OVERSAMPLE number of readings really fast
 oversample = 0
 for s in range(NUM_OVERSAMPLE):
 oversample += float(light.value)
 # and save the average from the oversamples
 samples[i] = oversample / NUM_OVERSAMPLE # Find the average

 mean = sum(samples) / float(len(samples)) # take the average
 print((samples[i] - mean,)) # 'center' the reading
 time.sleep(0.025) # change to go faster/slower

© Adafruit Industries https://learn.adafruit.com/sensor-plotting-with-mu-and-circuitpython Page 19 of 25

https://learn.adafruit.com/welcome-to-circuitpython/installing-mu-editor
https://en.wikipedia.org/wiki/Photoplethysmogram
https://en.wikipedia.org/wiki/DC_bias

 Since the signal keeps changing, the average is also going to keep changing. So we keep the last 20 samples and
compute their average. When the next sample comes along, we drop the oldest sample, and recompute the average
again of the 20 most recent values. This is a called a "moving average". Picture a moving window that is 20 samples
wide, moving along the stream of sample data that we are taking. For more detailed information about moving
averages, check out this article (https://adafru.it/BfD).

We begin our code by importing the modules we need: neopixel , analogio , time and board . Next, we create the
pixels object for the NeoPixels and the light object for the light sensor.

Then, we turn the pixel next to the light sensor green. Note that we turned pixel number "1" green, but it's actually the
second pixel on the board. This is because Python starts counting with 0, so the first pixel is pixel number "0".

Next, we assign NUM_OVERSAMPLE = 10 to specify how many light readings we'll take per sample, and
NUM_SAMPLES = 20 to specify how many samples we're going to take to calculate the average we need to remove
the DC bias. Then we create a place to store the samples for the moving average, in samples = [0] * NUMSAMPLES .

Now we start reading samples. The outer loop for i in range(NUM_SAMPLES): tells the code to cycle through a range
of 20 values, so i keeps running between 0 and 19 continuously.

As we mentioned above, we are also going to take 10 samples as a fast as possible and average them to smooth out
the noise. The inner loop for s in range(NUM_OVERSAMPLE): reads 10 values from the light sensor. We sum up all
those oversampling values using oversample += float(light.value) , until we've added up NUM_SAMPLES number of
values. Then we divide by 10 to find the average of the oversampling values, and store the value with samples[i] =

oversample / NUM_OVERSAMPLE .

After we've computed the oversampling average, we compute the moving average with mean = sum(samples) /

float(len(samples)) . The window wraps around the samples array. For instance, if i is 3, the most recent sample is in
samples[3] , and the previous samples are in samples[2] , samples[1] , samples[0] , and then wraps around back to
samples[19] , samples[18] , etc. all the way back to samples[4] , the oldest value. This image provides a visual
explanation.

© Adafruit Industries https://learn.adafruit.com/sensor-plotting-with-mu-and-circuitpython Page 20 of 25

https://en.wikipedia.org/wiki/Moving_average

We subtract the average from the sampled value, with samples[i] - mean, to center the reading around zero, or remove
the DC bias.

Remember, we initialised the moving average samples array with samples = [0] * NUMSAMPLES . You'll notice the
plotter doesn't respond correctly at the very beginning. This is because the the moving average that we're taking while
the first 20 samples are still in our moving window includes the zeros that we started with before our main loop. So,
until we've moved past the first 20 samples, our average will be skewed.

Then, we print it as a tuple print((samples[i] - mean,)) .

Note that the Mu plotter looks for tuple values to print. Tuples in Python come in parentheses () with comma
separators. If you have two values, a tuple would look like (1.0, 3.14) . Since we have only one value, we need to have
it print out like (1.0,) note the parentheses around the number, and the comma after the number. Thus the extra
parentheses and comma in print((samples[i] - mean,)) .

Finally we include time.sleep(0.025) to give a slight delay to the readings.

Once you have everything setup and running, try pressing your finger over the green LED and the light sensor on the
Circuit Playground Express, and watch the plotter react! If you press too hard, sometimes it won't respond. But if you
press lightly, you'll see a wave form on the plot that matches your pulse!

This is a great way to sense your pulse using the light sensor, and watch plot the changes as you press your finger
against it!

© Adafruit Industries https://learn.adafruit.com/sensor-plotting-with-mu-and-circuitpython Page 21 of 25

Soil Moisture

We're going to use CircuitPython, Mu, and the capacitive touch pads on Circuit Playground Express to plot soil
moisture sensing. We'll run this code on our Circuit Playground Express and use Mu to plot the soil moisure data that
CircuitPython prints out.

https://adafru.it/ANO

https://adafru.it/ANO

The hardware you'll need for this project is the Circuit Playground Express, an alligator clip and a nail. You'll also need
at least two soil samples, one wet and one dry, for calibrating the code.

Assembly is as simple as connecting one end of your alligator clip to pad A1 on the Circuit Playground Express, and the
other end of your alligator clip to the top of your nail.

Save the following as code.py on your Circuit Playground Express board, using the Mu editor:

First we import the libraries we need. The first library is time . Next, you'll see we import a specific part of of the second
library by saying from adafruit_circuitplayground.express import cpx . This way we can call this library by typing cpx instead
of the longer library name. Then we import touchio , simpleio , and board .

We set the pixel brightness. Pixel brightness is set by a number between 0 and 1, representing 0-100%, i.e. 0.3 would
be 30%. So we set our brightness to 20% with cpx.pixels.brightness = 0.2 . Then we create the touch object so we can
use it as our moisture sensor. We are going to use pin A1 in this project, so we provide board.A1 .

To sense whether the soil is dry or wet, we're going to use the raw capacitive touch values from the capacitive touch
pad on the Circuit Playground Express. We create two variables, DRY_VALUE and WET_VALUE and assign them to
the raw capacitive touch values associated with dry and wet soil.

We find these values in the main loop. We assign value_A1 = touch.raw_value , and then print the results of value_A1 .
This allows us to view the results of the raw capactitive touch values in the serial output. Wet soil has a higher raw

import time
from adafruit_circuitplayground.express import cpx
import touchio
import simpleio
import board

cpx.pixels.brightness = 0.2
touch = touchio.TouchIn(board.A1)

DRY_VALUE = 1500 # calibrate this by hand!
WET_VALUE = 2100 # calibrate this by hand!

while True:
 value_A1 = touch.raw_value
 print((value_A1,))

 # fill the pixels from red to green based on soil moisture
 percent_wet = int(simpleio.map_range(value_A1, DRY_VALUE, WET_VALUE, 0, 100))
 cpx.pixels.fill((100-percent_wet, percent_wet, 0))
 time.sleep(0.5)

© Adafruit Industries https://learn.adafruit.com/sensor-plotting-with-mu-and-circuitpython Page 22 of 25

https://learn.adafruit.com/welcome-to-circuitpython/installing-mu-editor

capacitive touch value than dry soil, and we can use this to track whether the soil is wet or dry. The code comes with
default values for both of these variables, however, the your actual results may be different. Therefore, you should
calibrate these values first.

Note that the Mu plotter looks for tuple values to print. Tuples in Python come in parentheses () with comma
separators. If you have two values, a tuple would look like (1.0, 3.14) . Since we have only one value, we need to have
it print out like (1.0,) note the parentheses around the number, and the comma after the number. Thus the extra
parentheses and comma in print((value_A1,)) .

DRY_VALUE and WET_VALUE both need to be calibrated by hand. To calibrate them, place the nail into your soil
sample, and open the serial console (REPL) in Mu. Then you can see what the returned value is and you can change
your variables to reflect it.

First place your nail into your dry soil sample.

As you can see, the dry value we are getting back is a

little bit different than the default number. So let's

change DRY_VALUE to reflect our results.

Now we'll do the same to get our wet value.

Place the nail into your wet soil sample.

Now look at the values in the serial output. Our wet

value is a little bit different, so let's change WET_VALUE

as well

We've determined our wet and dry values. Now we'll use these values to make the LEDs green when the soil is 100%
wet, and red when the soil is dry, or 0% wet. This is how you'll know your plant needs to be watered!

LED colors are set using a combination of red, green, and blue, in the form of an (R, G, B) tuple. Each member of the
tuple is set to a number between 0 and 255 that determines the amount of each color present. Red, green and blue in
different combinations can create all the colors in the rainbow! So, for example, to set the LED to red, the tuple would
be (255, 0, 0), which has the maximum level of red, and no green or blue. Green would be (0, 255, 0), etc.

© Adafruit Industries https://learn.adafruit.com/sensor-plotting-with-mu-and-circuitpython Page 23 of 25

https://learn.adafruit.com/assets/54119
https://learn.adafruit.com/assets/54120

So, we're going to need to map the raw capacitive touch values to fit within the values needed for an RGB tuple. To do
this, we're going to use simpleio.map_range . This works by providing the value we're going to use (value_A1), the
minimum value we expect value_A1 to be (which is DRY_VALUE), the maximum value we expect value_A1 to be
(WET_VALUE), and then the minimum and maximum numbers we'd like to match it to, which is 0 and 100 . By
assigning percent_wet = int(simpleio.map_range(value_A1, DRY_VALUE, WET_VALUE, 0, 100)) , we are taking the raw
capacitive touch values and mapping them to a whole number (int) between 0 and 100 to get a percentage.

We use this percentage to set the LEDs to be red when dry, green when wet, and a yellowish color in between as the
soil is slowly drying out. We light up all the pixels with cpx.pixels.fill((100-percent_wet, percent_wet, 0)) , which uses the
percent_wet we get from the previous line.

When the soil is 100% wet, the first member of the tuple is 0 (100-percent_wet if percent_wet =100 is 0), and the second
member is 100 (because percent_wet =100). So the tuple when the soil is wet is (0, 100, 0) which means the LEDs will
be green. This is how you know you don't need to water your soil!

When the soil is 0% wet, the first member of the tuple is 100 (100-percent_wet if percent_wet =0 is 100), and the second
member is 0 (because percent_wet =0). So the tuple when the soil is wet is (100, 0, 0) which means the LEDs will be
red. This is how you know it's time to water your soil!

But what about when your soil is sort of wet and sort of dry? When the soil is 50% wet, the first member of the tuple is
50 (100-percent_wet if percent_wet =50 is 50), and the second member is 50 (because percent_wet =50). So the tuple
when the soil is half dry is (50, 50, 0) which means the LEDs will be yellow. The yellow color will range from a greenish-
yellow to a reddish-yellow as your soil goes from moist to slowly drying out. This is how you'll know it'll be time to water
your soil soon!

Finally, we include a time.sleep(0.5) to slow down the speed of reading the data. Soil dries out slowly so there's no
need for reading the data super quickly.

Once you have everything setup and running, try placing your nail into wet soil, and watch the plotter immediately
react! Place your nail into dry soil to watch the plotter go down. Place it into soil that's only sort of wet to watch it go up
a little Place it back into wet soil and watch it go up higher!

This is a great way to see see soil moisture levels using the capacitive touch pad, and plot the changes as the soil
slowly dries out!

© Adafruit Industries https://learn.adafruit.com/sensor-plotting-with-mu-and-circuitpython Page 24 of 25

© Adafruit Industries Last Updated: 2018-09-06 08:05:51 PM UTC Page 25 of 25

	Guide Contents
	Light
	Temperature
	Buttons and Switch
	Motion
	Sound
	Capacitive Touch
	Potentiometer
	Color
	Heartbeat Pulse
	Soil Moisture

